Metrisierbarkeitssatz von Urysohn
(Weitergeleitet von Metrisationssatz von Urysohn)
Der Metrisierbarkeitssatz von Urysohn – oder auch Metrisationssatz von Urysohn (englisch Urysohn's metrization theorem) – ist ein klassischer mathematischer Lehrsatz auf dem Gebiet der Topologie, welcher auf den russischen Mathematiker Paul Urysohn zurückgeht. Der Satz behandelt die Frage der Metrisierbarkeit topologischer Räume im Zusammenhang mit Abzählbarkeitsbedingungen.[1][2] Dem Mathematiker Lutz Führer zufolge ist der Metrisierbarkeitssatz eines der berühmtesten Ergebnisse von P. Urysohn.[3]
Formulierung des Satzes
[Bearbeiten | Quelltext bearbeiten]Der Satz lässt sich zusammengefasst angeben wie folgt:[1][2][3]
- Für einen Hausdorff-Raum, welcher dem Zweiten Abzählbarkeitsaxiom genügt, sind Regularität, vollständige Regularität, Normalität und Metrisierbarkeit gleichwertige Eigenschaften.
- Es gilt sogar:
- Für einen T1-Raum sind die folgenden Bedingungen gleichwertig:
- (1) ist ein regulärer Raum und genügt dem Zweiten Abzählbarkeitsaxiom.
- (2) ist ein separabler und metrisierbarer Raum.
- (3) lässt sich einbetten in den Hilbertwürfel .
Korollare
[Bearbeiten | Quelltext bearbeiten]Aus dem Metrisierbarkeitssatz von Urysohn ergeben sich drei unmittelbare Folgerungen:
- (1) Ein kompakter Hausdorff-Raum ist genau dann metrisierbar, wenn er dem Zweiten Abzählbarkeitsaxiom genügt.[3]
- (2) Ein lokalkompakter Hausdorff-Raum, der dem Zweiten Abzählbarkeitsaxiom genügt, ist ein σ-kompakter Raum und als solcher – ebenso wie seine Einpunkt-Kompaktifizierung – metrisierbar.[3][4]
- (3) Das stetige Bild eines kompakten metrischen Raums in einem Hausdorff-Raum ist stets ein metrisierbarer Raum.[2]
Siehe auch
[Bearbeiten | Quelltext bearbeiten]Literatur
[Bearbeiten | Quelltext bearbeiten]- Lutz Führer: Allgemeine Topologie mit Anwendungen. Vieweg Verlag, Braunschweig 1977, ISBN 3-528-03059-3.
- Horst Schubert: Topologie. 4. Auflage. B. G. Teubner Verlag, Stuttgart 1975, ISBN 3-519-12200-6. MR0423277
- Paul Urysohn: Zum Metrisationsproblem. In: Mathematische Annalen. Band 94, 1925, S. 309–315 ([1]).
- Stephen Willard: General Topology (= Addison-Wesley Series in Mathematics). Addison-Wesley, Reading, Massachusetts (u. a.) 1970. MR0264581