Operationscharakteristik
In der Statistik ist die Operationscharakteristik, auch OC-Kurve (OC: englisch für operating characteristic) oder OC-Funktion[1] genannt, ein Konzept aus der Theorie statistischer Tests, mit dem ein funktionaler Zusammenhang zwischen der Wahrscheinlichkeit eines Fehlers 2. Art und der tatsächlichen Lage des unbekannten Parameters einer Verteilungsfunktion hergestellt wird.
Definition
[Bearbeiten | Quelltext bearbeiten]Gegeben ist eine Zufallsvariable mit einer Verteilungsfunktion , die von einem unbekannten Parameter abhängt. Für die Schätzung des Parameters werden Beobachtungen der Zufallsvariablen gemacht. Der Parameter kann dann durch eine Schätzfunktion
geschätzt werden. Es soll eine Vermutung bezüglich des wahren, unbekannten Parameters statistisch überprüft werden. Es wird also eine Hypothese bezüglich dieses Parameters aufgestellt, die sogenannte Nullhypothese . Man geht nun davon aus, dass bei Wahrheit der Nullhypothese der Schätzwert in der Nähe des wahren Parameters liegen müsste, und lehnt ab, wenn die Distanz zu groß ist, wenn also in den Ablehnungsbereich des Tests fällt. Der Ablehnungsbereich wird so festgelegt, dass von allen Stichproben selbst dann, wenn wahr wäre, ein Anteil von (häufig wählt man ) abgelehnt würde.
Man kann im Hypothesentest zwei Arten von Fehlern begehen:
- Man lehnt ab, obwohl der wahre Parameter ist. Es handelt sich also um einen Fehler, den sogenannten α-Fehler oder Fehler 1. Art.
- Man lehnt nicht ab, obwohl ein anderer Parameter der wahre Parameter ist. Das ist der β-Fehler oder Fehler 2. Art.
wird vor der Testprozedur festgelegt, dagegen hängt vom wahren Parameter ab, der in der Regel unbekannt ist. Man kann für die Risikoabschätzung einer falschen Entscheidung die β-Fehler für verschiedene alternative Parameterwerte berechnen. Der β-Fehler für einen alternativen Parameter berechnet sich als Wahrscheinlichkeit, dass in den Nichtablehnungsbereich der Nullhypothese fällt, wenn bzw. obwohl in Wahrheit die Verteilung von regiert:
- .
hängt also von ab und kann daher auch als Funktion des alternativen Parameters dargestellt werden:
- .
Diese Funktion wird als Operationscharakteristik, häufig auch geschrieben, bezeichnet. Die Gegenwahrscheinlichkeit zu ist die Wahrscheinlichkeit, dass abgelehnt und dafür akzeptiert wird, wenn der wahre Parameter ist. Hier ist die Ablehnung von zu Gunsten von also erwünscht, weshalb die entsprechende Funktion auch Gütefunktion (und ihr Funktionswert für gegebenes Trennschärfe oder Teststärke) genannt wird.
Gütefunktion und Operationscharakteristik stellen damit beide vollständige Charakterisierungen des zugehörigen Tests dar. Man erkennt an ihnen bspw., ob der Test mit wachsender Beobachtungszahl immer besser wird (Konsistenz) und ob die Wahrscheinlichkeit, abzulehnen, größer ist, wenn zutrifft, als wenn zutrifft (Unverfälschtheit).
Beispiel
[Bearbeiten | Quelltext bearbeiten]Ein Forellenzüchter liefert seinem Großabnehmer Forellen, die im Durchschnitt mindestens 260 g wiegen sollen. Bei Lieferung wird getestet, ob das Durchschnittsgewicht mindestens 260 Gramm beträgt. Wird die Hypothese abgelehnt, wird die Lieferung beanstandet. Es sei bekannt, dass das Gewicht der Forellen normalverteilt ist mit der Varianz und einem unbekannten Erwartungswert . Es werden in einer Stichprobe Forellen gewogen, wobei die -te Forelle wiegt. Das Durchschnittsgewicht
dieser Forellen wird ermittelt. Da der Mittelwert bei jedem Versuch anders ausfällt, ist diese Größe ebenfalls eine Zufallsvariable und normalverteilt mit den Parametern
- und .
Die Hypothesen lauten nun und .
Soll der Fehler erster Art beispielsweise betragen, ergibt sich der kritische Wert für die Prüfgröße als
mit als -Quantil der Standardnormalverteilung.
wird also abgelehnt, wenn ist, der Ablehnungsbereich ist . Ist jetzt tatsächlich wahr, würde in 5 % aller Stichproben in den Ablehnungsbereich fallen, es würde die Lieferung zu Unrecht zurückgeschickt werden, was dem α-Fehler entspricht.
Es kann aber beispielsweise auch vorkommen, dass das Durchschnittsgewicht in Wahrheit beträgt, dass aber zufällig ist. Das ist der β-Fehler für . Die Prüfgröße ist nun bei unveränderter Varianz in Wahrheit normalverteilt wie
- .
Die Wahrscheinlichkeit, dass die Nullhypothese nicht abgelehnt wird, ist dann
und berechnet sich mit Hilfe der Normalverteilung als
- ,
wobei der Wert der Normalverteilungsfunktion mit den Parametern 255 und 2 an der Stelle 256,7 ist und der entsprechende Wert der Standardnormalverteilung. Es würde also in ca. 20 % aller Stichproben die Lieferung akzeptiert werden, obwohl die Forellen im Durchschnitt untergewichtig sind. Beträgt dagegen in Wahrheit , ergibt sich der β-Fehler als
- ;
hier ist die Gefahr einer falschen Entscheidung nur noch sehr gering. Die Grafik der Operationscharakteristik zeigt, wie mit wachsender Entfernung von der β-Fehler sinkt. Man ist bestrebt, möglichst schnell in den Bereich eines kleinen β-Fehlers zu kommen. Mit der Erhöhung des Stichprobenumfangs kann man den β-Fehler reduzieren. Einen Test mit kleinem β-Fehler nennt man auch trennscharf, weil hier die Verteilungen stark getrennt sind.
Siehe auch
[Bearbeiten | Quelltext bearbeiten]Literatur
[Bearbeiten | Quelltext bearbeiten]- Hartung, Joachim/Elpelt, Bärbel/Klösener, Karl-Heinz: Statistik – Lehr- und Handbuch der angewandten Statistik. 9., durchges. Aufl., Oldenbourg, München 1993, insbesondere Seite 135ff und 381ff.
Weblinks
[Bearbeiten | Quelltext bearbeiten]Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Bernd Rönz, Hans G. Strohe (1994), Lexikon Statistik, Gabler Verlag, S. 268