Peano-Kurve

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die Peano-Kurve (nach Giuseppe Peano) ist eine raumfüllende Kurve (FASS-Kurve).

Sie ist definiert als der Grenzwert einer Folge von Kurven, die schrittweise konstruiert werden können.

Im zweidimensionalen Fall ist ein Beispiel für eine Peano-Kurve das folgende: Man beginnt mit der Unterteilung eines Quadrats in neun gleich große Quadrate, die in einer S-Kurve durchlaufen werden. Im nächsten Schritt wird jedes dieser Quadrate wieder unterteilt und die entstehenden Quadrate in S-Kurven durchlaufen, die als neue Kurve zusammengehängt werden:

Skaliert man die Kurven auf dieselbe Größe, erhält man als erste vier Schritte:

Setzt man dieses Verfahren der Rekursion fort, erhält man eine Folge von Kurven, die punktweise konvergiert.

Als Grenzwert erhält man die Peano-Kurve, auf der jeder Punkt des Ausgangsquadrats liegt und die unendlich lang ist.

Dieses Verfahren lässt sich leicht auf höhere Dimensionen verallgemeinern. Auch liefert eine stetige surjektive Abbildung (mit ) wiederum stetige und surjektive Abbildungen , und durch Verkettung erhält man eine stetige Surjektion für jede natürliche Zahl .

Weitere Peano-Kurven

[Bearbeiten | Quelltext bearbeiten]

Es existiert auch noch eine weitere flächenfüllende Kurve, die als „Peano-Kurve“ bekannt ist. Ihre Struktur entspricht der Cantor-Diagonalisierung. Dabei wird eine Strecke zwischen zwei Punkten durch das Gebilde der ersten Stufe ersetzt.

Peano-Kurve der ersten Stufe Peano-Kurve der zweiten Stufe
Commons: Peano-Kurve – Album mit Bildern, Videos und Audiodateien