Portmanteau-Test
Portmanteau-Tests (frz.: Mantel-tragend) sind statistische Tests, die reine Signifikanztests darstellen. Sie testen gegen eine lose formulierte Gegenhypothese, sozusagen wird gegen mehrere Gegenhypothesen unter einem Mantel getestet.
In der Zeitreihenanalyse versteht man als Portmanteau-Tests Tests, mit deren Hilfe im Rahmen der Diagnosephase für mehrere Autokorrelationskoeffizienten getestet werden kann, ob sie sich signifikant von null unterscheiden.
Diese Tests stellen streng genommen nur ein Beispiel von Portmanteau-Tests dar.
Box-Pierce-Test
[Bearbeiten | Quelltext bearbeiten]Die ursprüngliche Version des Tests stammt von Box/Pierce[1].
Die Hypothesen für diesen Test lauten:
- und
- gilt für mindestens ein l.
Dabei ist die (empirische) Autokorrelation der Reihe zum Lag (der zeitlichen Verschiebung) und die Anzahl der zu testenden Autokorrelationen.
Die Teststatistik wird Q-Statistik genannt:
wobei der Umfang des Datensatzes ist.
Diese Prüfgröße ist unter der Nullhypothese χ2-verteilt mit Freiheitsgraden; kann also verworfen werden, falls
Die Auswahl eines geeigneten Wertes für ist problematisch. Ist zu niedrig, greift die Asymptotik der -Approximation nicht. Auch ein zu großes hat nicht gewünschte Effekte. Für die Bestimmung von kann folgende Faustregel verwendet werden:
Ljung-Box-Test
[Bearbeiten | Quelltext bearbeiten]Da der Box-Pierce-Test nur bei langen Zeitreihen mit mehr als 100 Zeitreihenwerten zufriedenstellend arbeitet, wird von Ljung/Box[2] eine abgewandelte Teststatistik herangezogen. Dabei wird T durch T(T+2)/(T-K) ersetzt. Als Teststatistik ergibt sich:
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ G. E. P. Box, David A. Pierce: Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. In: Journal of the American Statistical Association. Band 65, Nr. 332, Dezember 1970, ISSN 0162-1459, S. 1509–1526, doi:10.1080/01621459.1970.10481180 (tandfonline.com [abgerufen am 2. November 2021]).
- ↑ G. M. LJUNG, G. E. P. BOX: On a measure of lack of fit in time series models. In: Biometrika. Band 65, Nr. 2, 1. August 1978, ISSN 0006-3444, S. 297–303, doi:10.1093/biomet/65.2.297.