Proteinligation
Die Proteinligation (englisch protein ligation) ist eine biochemische Methode der Proteinsynthese durch Verknüpfung von zwei oder mehreren Peptiden.
Reaktionswege
[Bearbeiten | Quelltext bearbeiten]Durch die Proteinligation können zwei Peptide aneinander gekoppelt werden. Meist handelt es sich dabei um Peptidfragmente, die durch Festphasenpeptidsynthese (SPPS) hergestellt wurden.[1] Verschiedene Verfahren zur Proteinligation wurden beschrieben, z. B.:
- die native chemical ligation[2][3]
- der Prior Thiol Capture
- die Expressed Protein Ligation[4]
- das Acyl-Initiated Capture
- die SEA native peptide ligation[5][6]
- die Intein-Kopplung
- die Peptidligation mit Selenocystein.[7]
- und die Spurlose Staudinger-Ligation[1]
Native chemical ligation
[Bearbeiten | Quelltext bearbeiten]Das N-terminale Peptid muss für die Proteinligation als letzte Aminosäure (an seinem C-Terminus) ein Thioester und das C-terminale Peptid muss für die Proteinligation als erste Aminosäure (an seinem N-Terminus) ein Cystein aufweisen.[2][3]
SEA native peptide ligation
[Bearbeiten | Quelltext bearbeiten]Das N-terminale Peptid muss für die Proteinligation als letzte Aminosäure (an seinem C-Terminus) eine bis(2-Sulfanylethyl)aminogruppe (SEA) und das C-terminale Peptid muss für die Proteinligation als erste Aminosäure (an seinem N-Terminus) ein Cystein oder Homocystein aufweisen.
Staudinger-Ligation
[Bearbeiten | Quelltext bearbeiten]Die im Jahr 2000 entdeckte Möglichkeit die Staudinger-Reaktion auch zur Peptid- bzw. Proteinligation zu nutzen ist als Staudinger-Ligation bekannt. Im Gegensatz zur „native peptide ligation“ hängt die Peptidverknüpfung mit der Staudinger-Ligation nicht von einer bestimmten Aminosäureseitenkette ab. Bei der Staudinger-Ligation bleibt eine Triarylphosphanoxidgruppe in Nachbarschaft zur Amidbindung. Ist diese nicht gewünscht kann die sogenannte spurlose Staudinger-Ligation genutzt werden, bei der die Phosphanoxideinheit im Hydrolyseschritt abgespalten wird. Dies wird durch die Verwendung des Phosphans Diphenylphosphanyl-phenol oder Di-phenylphosphanylmethanthiol erreicht. Beide Phosphane zeigen ein gutes Reaktionsprofil und ermöglichen so die Proteinligation in Ausbeuten von bis zu 99 %.[1]
Durch die Verwendung der spurlosen Staudinger-Ligation gelang so unter anderem die Synthese von Ribonuclease A aus drei Peptidfragmenten.[1]
Geschichte
[Bearbeiten | Quelltext bearbeiten]Die zugrundeliegende Reaktion der native chemical ligation wurde 1953 von T. Wieland veröffentlicht.[8] Ab 1994 wurde die Reaktion zur Erzeugung von Proteinen aus Peptiden durch S. B. Kent weiterentwickelt.[9][10] Im Jahr 2000 gelang Bertozzi et al. und Raines et al. die Proteinligation mit der Staudinger-Ligation.[1]
Literatur
[Bearbeiten | Quelltext bearbeiten]- T. Kimmerlin, D. Seebach: ‘100 years of peptide synthesis‘: ligation methods for peptide and protein synthesis with applications to beta-peptide assemblies. In: The journal of peptide research : official journal of the American Peptide Society. Band 65, Nummer 2, Februar 2005, S. 229–260, doi:10.1111/j.1399-3011.2005.00214.x, PMID 15705167.
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ a b c d e Maja Köhn, Rolf Breinbauer: Die Staudinger-Ligation– ein Geschenk für die Chemische Biologie. In: Angewandte Chemie. Band 116, Nr. 24, 14. Juni 2004, S. 3168–3178, doi:10.1002/ange.200401744.
- ↑ a b T. W. Muir, P. E. Dawson, S. B. Kent: Protein synthesis by chemical ligation of unprotected peptides in aqueous solution. In: Methods in enzymology. Band 289, 1997, ISSN 0076-6879, S. 266–298, PMID 9353726.
- ↑ a b T. M. Hackeng, J. H. Griffin, P. E. Dawson: Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. In: Proceedings of the National Academy of Sciences. Band 96, Nummer 18, August 1999, ISSN 0027-8424, S. 10068–10073, PMID 10468563, PMC 17843 (freier Volltext).
- ↑ T. W. Muir, D. Sondhi, P. A. Cole: Expressed protein ligation: a general method for protein engineering. In: Proceedings of the National Academy of Sciences. Band 95, Nummer 12, Juni 1998, S. 6705–6710. PMID 9618476, PMC 22605 (freier Volltext).
- ↑ N. Ollivier, J. Dheur, R. Mhidia, A. Blanpain, O. Melnyk: Bis(2-sulfanylethyl)amino native peptide ligation. In: Organic letters. Band 12, Nummer 22, November 2010, ISSN 1523-7052, S. 5238–5241, doi:10.1021/ol102273u, PMID 20964289.
- ↑ W. Hou, X. Zhang, F. Li, C. F. Liu: Peptidyl N,N-bis(2-mercaptoethyl)-amides as thioester precursors for native chemical ligation. In: Organic letters. Band 13, Nummer 3, Februar 2011, ISSN 1523-7052, S. 386–389, doi:10.1021/ol102735k, PMID 21175148.
- ↑ B. L. Nilsson, M. B. Soellner, R. T. Raines: Chemical synthesis of proteins. In: Annual review of biophysics and biomolecular structure. Band 34, 2005, S. 91–118, doi:10.1146/annurev.biophys.34.040204.144700. PMID 15869385, PMC 2845543 (freier Volltext).
- ↑ T. Wieland, E. Bokelmann, L. Bauer, H. U. Lang, H. Lau, W. Schafer: Polypeptide syntheses. VIII. Formation of sulfur containing peptides by the intramolecular migration of aminoacyl groups. In: Liebigs Ann Chem. Band 583, 1953, S. 129–149.
- ↑ P. E. Dawson, T. W. Muir, I. Clark-Lewis, S. B. Kent: Synthesis of proteins by native chemical ligation. In: Science. Band 266, Nummer 5186, November 1994, S. 776–779. PMID 7973629.
- ↑ S. Kent: Total chemical synthesis of enzymes. In: Journal of peptide science : an official publication of the European Peptide Society. Band 9, Nummer 9, September 2003, S. 574–593, doi:10.1002/psc.475. PMID 14552420.