Quaternionisch-hyperbolischer Raum
Der quaternionisch-hyperbolische Raum ist in der Mathematik ein mit Hilfe von Quaternionen definierter negativ gekrümmter symmetrischer Raum.
Definition
[Bearbeiten | Quelltext bearbeiten]Seien die Quaternionen und sei der -Vektorraum mit der Quaternionisch-hermiteschen Form
für . (Hierbei ist die quaternionische Konjugation definiert durch für reelle Zahlen a,b,c,d.)
Der n-dimensionale quaternionisch-hyperbolische Raum ist
mit der von der Hermiteschen Form induzierten Riemannschen Metrik.
Siegel-Modell
[Bearbeiten | Quelltext bearbeiten]Eine äquivalente Definition erhält man mit dem Siegel-Modell.[1] Hier benutzt man die quaternionisch-hermitesche Form , betrachtet das Bild von unter der Projektion auf den projektiven Raum und definiert .
Geometrie
[Bearbeiten | Quelltext bearbeiten]ist ein symmetrischer Raum vom Rang 1.
Für die Schnittkrümmung von Ebenen im gilt die Ungleichung . Ebenen in haben Schnittkrümmung , während die Ebene die Schnittkrümmung hat.
Isometrien und Quasi-Isometrien
[Bearbeiten | Quelltext bearbeiten]Die Isometriegruppe des ist , dabei ist die Lie-Gruppe
- .
Alle Quasi-Isometrien des haben endlichen Abstand von einer Isometrie.[2]
Quaternionisch-hyperbolische Mannigfaltigkeiten
[Bearbeiten | Quelltext bearbeiten]Eine Riemannsche Mannigfaltigkeit heißt quaternionisch-hyperbolisch, wenn ihre universelle Überlagerung isometrisch zum ist.
Weblinks
[Bearbeiten | Quelltext bearbeiten]- Jean-François Quint: An overview of Patterson-Sullivan theory pdf
- Gongopadhyay, Parsad: Classification of quaternionic hyperbolic isometries pdf
Quellen
[Bearbeiten | Quelltext bearbeiten]- ↑ Inkang Kim, John R. Parker: Geometry of quaternionic hyperbolic manifolds. In: Cambridge Philosophical Society: Mathematical Proceedings, 135 (2003), no. 2, 291–320. ISSN 0305-0041 pdf
- ↑ Pierre Pansu: Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. In: Annals of Mathematics, (2) 129 (1989), no. 1, 1–60. ISSN 0003-486Xpdf