Betragsfunktion

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Reelle Betragsfunktion)
Zur Navigation springen Zur Suche springen
Verlauf der Betragsfunktion auf

In der Mathematik ordnet die Betragsfunktion einer reellen oder komplexen Zahl ihren Abstand zur Null zu. Dieser sogenannte absolute Betrag, Absolutbetrag, Absolutwert oder auch schlicht Betrag ist immer eine nichtnegative reelle Zahl. Der Betrag einer Zahl wird meist mit , seltener mit , bezeichnet. Das Quadrat der Betragsfunktion wird auch Betragsquadrat genannt.

Reelle Betragsfunktion

[Bearbeiten | Quelltext bearbeiten]

Den absoluten Betrag einer reellen Zahlkonstanten erhält man durch Weglassen des Vorzeichens. Auf der Zahlengeraden bedeutet der Betrag den Abstand der gegebenen Zahl von Null.

Für eine reelle Zahl gilt:

Komplexe Betragsfunktion

[Bearbeiten | Quelltext bearbeiten]

Für eine komplexe Zahl mit reellen Zahlen und definiert man

,

wobei die komplex Konjugierte von bezeichnet.

Ist reell (d. h. , also ), so geht diese Definition in

über, was mit der Definition des Betrages einer reellen Zahl übereinstimmt.

Veranschaulicht man die komplexen Zahlen als Punkte der Gaußschen Zahlenebene, so entspricht diese Definition nach dem Satz des Pythagoras ebenfalls dem Abstand des zur Zahl gehörenden Punktes vom sogenannten Nullpunkt.

Folgende Zahlenbeispiele zeigen die Funktionsweise der Betragsfunktion.

Gleichungen mit Absolutbetrag

[Bearbeiten | Quelltext bearbeiten]

Aus folgt für reelle Zahlen oder .

Ist jedoch , dann gibt es kein und kein mit .

In einem weiteren Beispiel seien alle Zahlen gesucht, welche die Gleichung erfüllen.

Man rechnet wie folgt:

Die Gleichung besitzt also genau zwei Lösungen, nämlich 2 und −8.

Ungleichungen mit Absolutbetrag

[Bearbeiten | Quelltext bearbeiten]

Für Ungleichungen können die folgenden Äquivalenzen verwendet werden:

Gesucht seien beispielsweise alle Zahlen mit der Eigenschaft .

Dann rechnet man:

Als Lösung erhält man also alle aus dem Intervall .

Allgemein gilt für reelle Zahlen , und :

.

Betragsnorm und Betragsmetrik

[Bearbeiten | Quelltext bearbeiten]

Die Betragsfunktion erfüllt die drei Normaxiome Definitheit, absolute Homogenität und Subadditivität und ist damit eine Norm, genannt Betragsnorm, auf dem Vektorraum der reellen oder komplexen Zahlen. Die Definitheit folgt daraus, dass die einzige Nullstelle der Wurzelfunktion im Nullpunkt liegt, womit

gilt. Die Homogenität folgt für komplexe aus

und die Dreiecksungleichung aus

wobei sich die beiden gesuchten Eigenschaften jeweils durch Ziehen der (positiven) Wurzel auf beiden Seiten ergeben. Hierbei wurde genutzt, dass die Konjugierte der Summe bzw. des Produkts zweier komplexer Zahlen die Summe bzw. das Produkt der jeweils konjugierten Zahlen ist. Weiterhin wurde verwendet, dass die zweimalige Konjugation wieder die Ausgangszahl ergibt und dass der Betrag einer komplexen Zahl immer mindestens so groß wie ihr Realteil ist. Im reellen Fall folgen die drei Normeigenschaften analog durch Weglassen der Konjugation.

Die Betragsnorm ist vom Standardskalarprodukt zweier reeller bzw. komplexer Zahlen und induziert. Die Betragsnorm selbst induziert wiederum eine Metrik (Abstandsfunktion), die Betragsmetrik

,

indem als Abstand der Zahlen der Betrag ihrer Differenz genommen wird.

Analytische Eigenschaften

[Bearbeiten | Quelltext bearbeiten]

In diesem Abschnitt werden Eigenschaften der Betragsfunktion angeführt, die insbesondere im mathematischen Bereich der Analysis von Interesse sind.

Die einzige Nullstelle der beiden Betragsfunktionen ist 0, das heißt gilt genau dann, wenn gilt. Dies ist somit eine andere Terminologie der zuvor erwähnten Definitheit.

Verhältnis zur Vorzeichenfunktion

[Bearbeiten | Quelltext bearbeiten]

Für alle gilt , wobei die Vorzeichenfunktion bezeichnet. Da die reelle nur die Einschränkung der komplexen Betragsfunktion auf ist, gilt die Identität auch für die reelle Betragsfunktion. Die Ableitung der auf eingeschränkten Betragsfunktion ist die auf eingeschränkte Vorzeichenfunktion.

Stetigkeit, Differenzierbarkeit und Integrierbarkeit

[Bearbeiten | Quelltext bearbeiten]

Die reelle Betragsfunktion und die komplexe sind auf ihrem ganzen Definitionsbereich stetig. Aus der Subadditivität der Betragsfunktion beziehungsweise aus der (umgekehrten) Dreiecksungleichung folgt, dass die beiden Betragsfunktionen sogar Lipschitz-stetig sind mit Lipschitz-Konstante :

.

Die reelle Betragsfunktion ist an der Stelle nicht differenzierbar und somit auf ihrem Definitionsbereich keine differenzierbare Funktion. Sie ist jedoch fast überall differenzierbar, was auch aus dem Satz von Rademacher folgt. Für ist die Ableitung der reellen Betragsfunktion die Vorzeichenfunktion . Als stetige Funktion ist die reelle Betragsfunktion über beschränkte Intervalle integrierbar; eine Stammfunktion ist .

Die komplexe Betragsfunktion ist nirgends komplex differenzierbar, denn die Cauchy-Riemann-Differentialgleichungen sind nicht erfüllt.

Archimedischer Betrag

[Bearbeiten | Quelltext bearbeiten]

Beide Betragsfunktionen, die reelle und die komplexe, werden archimedisch genannt, weil es eine ganze Zahl gibt mit . Daraus folgt aber auch, dass für alle ganzen Zahlen ebenfalls ist.[1]

Nützliche Identitäten

[Bearbeiten | Quelltext bearbeiten]

Seien . Dann gilt

Verallgemeinerungen

[Bearbeiten | Quelltext bearbeiten]

Betragsfunktion für Körper

[Bearbeiten | Quelltext bearbeiten]

Verallgemeinert spricht man von einem Betrag, wenn eine Funktion von einem Integritätsbereich in die reellen Zahlen folgende Bedingungen erfüllt:

(0) Nicht-Negativität
(1) Definitheit
(0) und (1) zusammen nennt man positive Definitheit
(2) Multiplikativität, absolute Homogenität
(3) Subadditivität, Dreiecksungleichung

Die Fortsetzung auf den Quotientenkörper von ist wegen der Multiplikativität eindeutig.

Bemerkung
Eine Betragsfunktion für einen Körper ist eine Bewertung dieses Körpers.

Ist für alle natürlichen , dann nennt man den Betrag (oder die Bewertung) nichtarchimedisch.

Der Betrag für alle (ist nichtarchimedisch und) wird trivial genannt.

Bei nichtarchimedischen Beträgen (oder Bewertungen) gilt

(3’) die verschärfte Dreiecksungleichung.

Sie macht den Betrag zu einem ultrametrischen. Umgekehrt ist jeder ultrametrische Betrag nichtarchimedisch.

Betrag und Charakteristik

[Bearbeiten | Quelltext bearbeiten]
  • Integritätsbereiche mit einem archimedischen Betrag haben die Charakteristik 0.
  • Integritätsbereiche mit einer von 0 verschiedenen Charakteristik (haben Primzahlcharakteristik und) nehmen nur nichtarchimedische Beträge an.
  • Endliche Integritätsbereiche sind endliche Körper mit Primzahlcharakteristik und nehmen nur den trivialen Betrag an.
  • Der Körper der rationalen Zahlen als Primkörper der Charakteristik 0 und seine endlichen Erweiterungen nehmen sowohl archimedische als auch nichtarchimedische Beträge an.

Vervollständigung

[Bearbeiten | Quelltext bearbeiten]

Der Körper lässt sich für jede Betragsfunktion, genauer: für die von jeder Betragsfunktion (oder Bewertung) induzierte Metrik, vervollständigen. Die Vervollständigung von wird häufig mit bezeichnet.

Archimedische Vervollständigungen der rationalen Zahlen sind und , nichtarchimedische sind (die p-adischen Zahlen) für Primzahlen .

Beim trivialen Betrag entsteht nichts Neues.

Äquivalenz von Beträgen

[Bearbeiten | Quelltext bearbeiten]

Sind und Beträge (oder Bewertungen) eines Körpers , dann sind die folgenden drei Behauptungen gleichwertig:

  1. Jede Folge , die unter eine Nullfolge ist, d. h. , ist auch unter eine Nullfolge – und umgekehrt.
  2. Aus folgt .
  3. ist eine Potenz von , d. h. für alle mit einem festen .

Die Betragsfunktionen der rationalen Zahlen

[Bearbeiten | Quelltext bearbeiten]

Nach dem Satz von Ostrowski repräsentieren die in diesem Artikel erwähnten Beträge, der eine archimedische (und euklidische) und die unendlich vielen je einer Primzahl zuzuordnenden nichtarchimedischen, alle Klassen von Beträgen (oder Bewertungen) der rationalen Zahlen .

Für diese Beträge gilt der Approximationssatz.

Die Betragsfunktion auf den reellen bzw. komplexen Zahlen kann durch die Eigenschaften Definitheit, absolute Homogenität und Subadditivität auf beliebige Vektorräume verallgemeinert werden. Eine solche Funktion wird Norm genannt. Sie ist aber nicht eindeutig bestimmt.

Wikibooks: Mathe für Nicht-Freaks: Betrag – Lern- und Lehrmaterialien

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. van der Waerden: Algebra. 2. Teil. Springer-Verlag, 1967, Bewertete Körper, S. 203, 212.