Rendite nach ISMA

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die Rendite nach ISMA (früher „AIBD-Rendite“) ist ein internationales Maß für die Rendite von Anleihen, das die tägliche Effektivverzinsung berücksichtigt.

Die ISMA-Rendite stammt von der ehemaligen International Securities Market Association (ISMA), die diese Regel als heute meist verbreiteten Standard einführte.[1]

Unabhängig vom Zeitpunkt der tatsächlichen Zinsverrechnung werden hier jeden Tag die angefallenen Stückzinsen dem angelegten Kapital bzw. Börsenkurs zugeschlagen (englisch dirty price) und am nächsten Tag mit verzinst.[2]

Für den Fall, dass die Zinsperiode größer als die Rentenperiode ist, kann die ISMA-Methode zur Anpassung „Rentenperiode gleich Zinsperiode“ angewandt werden. Bei der ISMA-Methode ist die Zinsperiode identisch mit dem Zeitintervall zwischen zwei Zahlungen, entsprechend oft erfolgt der Zinszuschlag. Der anzuwendende Periodenzinssatz ist konform zum Jahreszinssatz .[3]

Ermittlung zur Anwendung der ISMA-Methode

[Bearbeiten | Quelltext bearbeiten]

Gegeben sei eine achtmalige vorschüssige Rate mit 500 € pro Quartal (Beginn mit der Zahlung der 1. Rate am 1. Januar 2008) und i = 10 % p. a. (effektiv) sowie dem Aufzinsungsfaktor Gesucht ist der vorschüssige Endwert (in €) nach der ISMA-Methode zum 1. Januar 2010. Siehe dazu auch die vier Grundformeln der Rentenrechnung.

 (der Periodenzinssatz entspricht dem Quartalszinssatz): daher .
,
,
.
Skizze

Das Bild zeigt eine achtmalige vorschüssige Ratenzahlung mit der Quartalsrate R = 500 €, beginnend am 1. Januar 2008.

Wirtschaftliche Aspekte

[Bearbeiten | Quelltext bearbeiten]

Die ISMA-Rendite erbringt das gleiche Ergebnis wie die Methode nach Paul Braess/Hermann Fangmeyer, wenn eine Anleihe mit jährlicher Verzinsung zu einem Kupontermin bewertet wird.[4]

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Thomas Priermeier, Fundamentale Analyse in der Praxis, 2006, S. 126
  2. Andreas Horsch/Gerd Waschbusch/Klaus Schäfer/Ludwig Gramlich/Peter Gluchowski, Gabler Banklexikon: Bank – Börse – Finanzierung, Band I, 2020, S. 1123
  3. Jürgen Tietze, Einführung in die Finanzmathematik: Klassische Verfahren und neuere Entwicklungen, 2014, passim; ISBN 978-3658071561
  4. Manfred Frühwirth, Handbuch der Renditeberechnung, 2002, S. 125 f.