Sasaki-Mannigfaltigkeit

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

In der Mathematik sind Sasaki-Mannigfaltigkeiten oder Sasaki-Strukturen ein Begriff der Differentialgeometrie. Es handelt sich um Riemannsche Kontaktmannigfaltigkeiten mit einer gewissen Kompatibilitätsbedingung zwischen der Riemannschen Metrik und der Kontaktform.

Für eine Mannigfaltigkeit mit einer Riemannschen Metrik hat man auf die Kegelmetrik .

Für eine Mannigfaltigkeit mit einer Kontaktform ist eine symplektische Form auf .

Eine Mannigfaltigkeit mit einer Riemannschen Metrik und einer Kontaktform heißt Sasaki-Mannigfaltigkeit, wenn eine Kähler-Mannigfaltigkeit mit Kähler-Metrik und Kähler-Form ist.

  • Der mit Koordinaten ist mit der Kontaktform und der Metrik eine Sasaki-Mannigfaltigkeit.
  • Die Sphäre mit der Standardmetrik und der Standardkontaktform ist eine Sasaki-Mannigfaltigkeit. Ebenso ist der als Quotient der antipodalen -Wirkung erhaltene projektive Raum eine Sasaki-Mannigfaltigkeit.