Satz über wandernde Gebiete

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Die Komponenten der Fatou-Menge der transzendenten Abbildung

sind weiß gezeichnet, sie sind wandernde Gebiete
Die Komponenten der Fatou-Menge der rationalen Abbildung

konvergieren je nach Färbung gegen eine der Nullstellen von und sind deshalb nicht-wandernde Gebiete

In der Mathematik ist der Satz über wandernde Gebiete (engl. no-wandering-domain theorem) ein Lehrsatz aus der Theorie dynamischer Systeme. Er besagt, dass durch Iteration einer rationalen Abbildung in der komplexen Zahlenebene keine wandernden Gebiete entstehen.

Der Satz wurde in den 20er Jahren von Pierre Fatou und Gaston Julia vermutet und 1982 von Dennis Sullivan bewiesen.

Wandernde Gebiete

[Bearbeiten | Quelltext bearbeiten]

Sei die Riemannsche Zahlenkugel und eine holomorphe Abbildung. Die Fatou-Menge ist die Menge aller Punkte in denen die Folge der Iterierten gleichgradig stetig ist, das heißt, das in der --Definition von Stetigkeit hängt nicht von ab. Die Fatou-Menge kann aus verschiedenen (evtl. unendlich vielen) Zusammenhangskomponenten bestehen. Für eine Zusammenhangskomponente ist ebenfalls eine Zusammenhangskomponente der Fatou-Menge.

Eine Zusammenhangskomponente heißt ein wanderndes Gebiet, wenn die Folge aus unendlich vielen unterschiedlichen Zusammenhangskomponenten besteht. Andernfalls, wenn die Folge letztendlich periodisch wird, spricht man von einem nichtwandernden Gebiet.

Satz über wandernde Gebiete

[Bearbeiten | Quelltext bearbeiten]

Die Fatou-Menge einer rationalen Abbildung hat keine wandernden Gebiete.

Transzendente ganze Funktionen können hingegen wandernde Gebiete haben. Ein entsprechendes Beispiel war bereits 1976 von Baker gegeben worden.

  • D. Sullivan: Quasiconformal homeomorphisms and dynamics. I: Solution of the Fatou-Julia problem on wandering domains. Annals of Mathematics, Second Series, Vol. 122, No. 2, S. 401–418, 1985, Preview bei JSTOR.org.
  • I. N. Baker: An entire function which has wandering domains. Journal of the Australian Mathematical Society, Series A, Vol. 22, S. 173–176, 1976.