Satz von Gelfand-Neumark

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die Gelfand-Neumark-Sätze (nach Israel Gelfand und Mark Neumark) und die GNS-Konstruktion bilden die Ausgangspunkte der mathematischen Theorie der C*-Algebren. Sie verbinden abstrakt definierte C*-Algebren mit konkreten Algebren von Funktionen und Operatoren.

Die ersten Beispiele von C*-Algebren, die man direkt nach der Definition angeben kann, sind die Algebra der stetigen Funktionen auf einem lokalkompakten Hausdorff-Raum X, die im Unendlichen verschwinden (siehe hierzu C0-Funktion), und die Unter-C*-Algebren von , wobei die Algebra der beschränkten, linearen Operatoren auf einem Hilbertraum H ist.

Die Gelfand-Neumark-Sätze zeigen, dass dies bis auf isometrische *-Isomorphie bereits alle möglichen C*-Algebren sind. Diese Resultate sind erstaunlich, denn in der Definition der C*-Algebren ist weder von lokalkompakten Hausdorff-Räumen noch von Hilberträumen die Rede.

Satz von Gelfand-Neumark, kommutativer Fall

[Bearbeiten | Quelltext bearbeiten]

Ist A eine kommutative C*-Algebra, so gibt es einen lokalkompakten Hausdorff-Raum X und einen isometrischen *-Isomorphismus zwischen A und .

Konstruktion des lokalkompakten Hausdorffraums

[Bearbeiten | Quelltext bearbeiten]

X ist die Menge aller von der Nullabbildung verschiedenen *-Homomorphismen . Zu jedem ist durch eine Abbildung definiert. Man nennt die Gelfand-Transformierte von . Schließlich kann man beweisen, dass die Topologie der punktweisen Konvergenz X zu einem lokalkompakten Hausdorff-Raum macht und dass ein isometrischer *-Isomorphismus zwischen A und ist.

Nach diesem Satz kann ein Element einer kommutativen C*-Algebra wie eine stetige Funktion behandelt werden, was sich zum sogenannten stetigen Funktionalkalkül ausbauen lässt. So ist z. B. das Spektrum eines Elementes nichts weiter als der Abschluss des Bildes der zugehörigen stetigen Funktion.

Dieser Satz eröffnet ein sehr fruchtbares Zusammenspiel zwischen algebraischen Eigenschaften von C*-Algebren und topologischen Eigenschaften lokalkompakter Räume. Ist , so hat man neben vielen anderen folgende Entsprechungen:

Topologische Begriffsbildungen werden in algebraische Eigenschaften kommutativer C*-Algebren übersetzt und dann auf nicht-kommutative C*-Algebren verallgemeinert; das ist häufig der Ausgangspunkt weiterer Theorien. Aus diesem Grunde bezeichnet man die Theorie der C*-Algebren auch als nicht-kommutative Topologie.

Satz von Gelfand-Neumark, allgemeiner Fall

[Bearbeiten | Quelltext bearbeiten]

Ist A eine C*-Algebra, so gibt es einen Hilbert-Raum H, so dass A isometrisch *-isomorph zu einer Unter-C*-Algebra von L(H) ist.

Konstruktion des Hilbertraums

[Bearbeiten | Quelltext bearbeiten]

Sei ein stetiges lineares Funktional mit und für alle . Solche Funktionale nennt man auch Zustände von A. Zum Zustand setze . Dann definiert die Formel ein Skalarprodukt auf dem Quotientenraum . Die Vervollständigung bzgl. dieses Skalarproduktes ist ein Hilbertraum . Für jedes lässt sich die Abbildung zu einem stetigen linearen Operator auf fortsetzen. Dann zeigt man, dass die so erklärte Abbildung ein *-Homomorphismus ist. Schließlich konstruiert man aus der Gesamtheit der so gewonnenen Hilberträume einen Hilbertraum der gewünschten Art.

1. Ein Element einer abstrakt definierten C*-Algebra kann also wie ein beschränkter linearer Operator auf einem Hilbertraum behandelt werden.

Die oben beschriebene Konstruktion von aus f heißt die GNS-Konstruktion, wobei GNS für Gelfand, Neumark und Segal steht.

Man nennt *-Homomorphismen der Art auch Darstellungen von A auf H. Nach obigem Satz hat jede C*-Algebra eine treue (d. h. injektive) Darstellung auf einem Hilbertraum. Eine Darstellung heißt topologisch irreduzibel, wenn es keinen echten von 0 verschiedenen abgeschlossenen Unterraum U von H gibt, für den für alle gilt.

2. Die Existenz "genügend vieler" Zustände lässt sich mit dem Satz von Hahn-Banach zeigen: Zu jedem gibt es einen Zustand von mit .

Ist A eine C*-Algebra, so ist der Zustandsraum S(A) konvex und ist genau dann ein Extremalpunkt, wenn die Darstellung topologisch irreduzibel ist.

Jede irreduzible Darstellung von A ist von der Form für einen extremalen Zustand f von A.

Weitere Bemerkungen

[Bearbeiten | Quelltext bearbeiten]

Auf dieser Grundlage wurde eine sehr weit reichende Darstellungstheorie für C*-Algebren entwickelt. C*-Algebren lassen sich durch die Bilder ihrer irreduziblen Darstellungen weiter klassifizieren. So heißt eine C*-Algebra liminal, wenn das Bild einer jeden irreduziblen Darstellung mit der Algebra der kompakten Operatoren zusammenfällt. Eine C*-Algebra heißt postliminal, wenn das Bild einer jeden irreduziblen Darstellung die Algebra der kompakten Operatoren enthält.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Chun-Yen Chou: Notes on the separability of C*-algebras, Taiwanese Journal of Mathematics, Band 16 (2), 2012, Seiten 555–559
  2. Gert K. Pedersen: C*-Algebras and Their Automorphism Groups, Academic Press Inc. (1979), ISBN 0-1254-9450-5, Satz 3.10.5