Satz von Halmos-Savage

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Der Satz von Halmos-Savage ist ein Lehrsatz der mathematischen Statistik, der bei Vorliegen einer dominierten Verteilungsklasse ein notwendiges und hinreichendes Kriterium für die Suffizienz von σ-Algebren (und damit auch von Statistiken) liefert. Damit ist der Satz von Halmos-Savage ein Hilfsmittel, um zu überprüfen, ob gewisse Funktionen eine Datenkompression ohne Informationsverlust ermöglichen. Aus dem Satz von Halmos-Savage lässt sich das leichter zu handhabende Neyman-Kriterium für Suffizienz ableiten. Ebenso lassen sich aus dem Satz Kriterien für die Existenz von minimalsuffizienten σ-Algebren ableiten.

Der Satz wurde 1949 von Paul Halmos und Leonard J. Savage bewiesen.[1]

Rahmenbedingungen

[Bearbeiten | Quelltext bearbeiten]

Gegeben sei ein statistisches Modell mit einer dominierten Verteilungsklasse .

Für eine beliebige Verteilungsklasse sei die Menge aller -Nullmengen. Für eine dominierte Verteilungsklasse existiert nun immer ein dominierendes , so dass und eine abzählbare Konvexkombination mit echt positiven Koeffizienten von Elementen aus ist. Es gilt also

.

Sei eine dominierte Verteilungsklasse und wie oben angegeben. Dann ist eine Unter-σ-Algebra von genau dann suffizient, wenn für alle eine Funktion existiert, so dass -fast sicher die Radon-Nikodým-Ableitung von bezüglich ist, also

.

Seien σ-Algebren und sei suffizient. Außerdem sei eine dominierte Verteilungsklasse. Dann existiert nach dem Satz von Halmos-Savage ein , so dass und

.

Da aber ist, gilt . Da immer noch die Dichten-Eigenschaft erfüllt, ist mit nochmaliger Anwendung des Satzes auch suffizient.

Man beachte, dass diese Aussage im Allgemeinen nicht gilt und dies eines der Defizite des Suffizienzbegriffs darstellt.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Halmos, Savage: Application of the Radon-Nikodym Theorem to the Theory of Sufficient Statistics, Annals of Mathematical Statistics, Band 20, 1949, S. 225–241, Project Euclid