Satz von Wallace

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Der Satz von Wallace ist ein Lehrsatz aus dem mathematischen Teilgebiet der Topologie, welcher auf den amerikanischen Mathematiker Alexander Doniphan Wallace (1905–1985)[1] zurückgeht.[2][3][4] Er behandelt eine spezielle Trennungseigenschaft kompakter Produktunterräume in Produkttopologien: Ein Produkt kompakter Mengen in einer offenen Menge liegt in einem darin enthaltenen Produkt offener Mengen.

Formulierung des Satzes

[Bearbeiten | Quelltext bearbeiten]

Gegeben seien zwei topologische Räume und und darin eingelagert zwei kompakte Unterräume und . Sei ferner eine offene Obermenge von in .

Dann existieren offene Teilmengen und mit .

Jeder kompakte Hausdorff-Raum ist normal.[5]

Sind nämlich    und     abgeschlossene, disjunkte Teilmengen des kompakten Hausdorffraums , so ist    . Da     ein Hausdorffraum ist, ist die Diagonale abgeschlossen, also ist     offen. Wendet man nun obigen Satz von Wallace an, so erhält man zwei offene Mengen     und     mit    , d. h.    . Damit ist     normal.

  • John L. Kelley: General topology (= Graduate Texts in Mathematics. Band 27). Reprint of the 1955 edition published by Van Nostrand. Springer, New York NY u. a. 1975, ISBN 3-540-90125-6.
  • Anthony Connors Shershin: Introduction to topological semigroups. University Presses of Florida, Miami FL 1979, ISBN 0-8130-0664-3.
  • Kapil D. Joshi: Introduction to General Topology. Wiley Eastern, New Delhi u. a. 1983, ISBN 0-85226-444-5.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Weiteres zur Vita siehe hier.
  2. Kelley: General topology. 1975, S. 142.
  3. Shershin: Introduction to topological semigroups. 1979, S. 23.
  4. Joshi: Introduction to General Topology. 1983, S. 171.
  5. Shershin: Introduction to topological semigroups. 1979, S. 24.