Schwertlilien-Datensatz

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Der Schwertlilien-Datensatz (engl. Iris flower data set) ist ein multivariater Datensatz, welcher vom britischen Statistiker und Biologen Ronald Fisher erstellt wurde.[1] Der Datensatz wird auch Anderson's Iris data set genannt, da der amerikanische Botaniker Edgar Anderson die Daten sammelte, um die morphologischen Abweichungen von Schwertlilien (Gattung Iris) dreier miteinander verwandter Spezies zu quantifizieren.[2] Zwei der drei Arten wurden in der Gaspésie, „alle von der gleichen Weide, am selben Tag“ gesammelt und „zum gleichen Zeitpunkt, von der gleichen Person, mit dem gleichen Apparat gemessen“.[3]

Der Datensatz besteht aus je 50 Proben von jeder der drei Schwertlilienarten (Iris setosa, Iris virginica und Iris versicolor). Bei jeder der Proben wurden vier Merkmale gemessen: Die Länge und Breite von Kelchblatt und Kronblatt in Zentimetern. Anhand dieser vier Merkmale entwickelte Fisher ein lineares Modell, um die Arten voneinander zu unterscheiden. Fishers wissenschaftliche Abhandlung hierzu wurde in der wissenschaftlichen Fachzeitschrift Annals of Eugenics (heute Annals of Human Genetics) veröffentlicht.

Nutzung des Datensatzes

[Bearbeiten | Quelltext bearbeiten]
Clusteranalyse mit k-Means-Algorithmus
„metro map“ des Datensatzes

Der ursprüngliche Zweck der Werte war es, als Beispieldatensatz für Diskriminanzanalyse zu dienen. Mit der Zeit wurden sie aber immer mehr als Testdatensatz für verschiedene statistische Klassifikationsverfahren, zum Beispiel mittels Support Vector Machine, und für maschinelles Lernen verwendet.[4]

In der Cluster-Analyse wird der Datensatz allerdings relativ selten verwendet, da die Daten nur zwei Cluster enthalten, welche klar getrennt liegen. Einer der beiden Cluster enthält die Messungen der Borsten-Schwertlilie und der andere sowohl die Messungen der Virginischen Schwertlilie als auch die der Verschiedenfarbigen Schwertlilie, welche anhand der gemessenen Eigenschaften nicht auseinandergehalten werden können. Aufgrund dessen ist der Datensatz ein Beispiel für den Unterschied zwischen überwachtem und unüberwachtem Lernen.[5]

Borsten-Schwertlilie

Der Datensatz enthält 150 Messungen von fünf Attributen: Länge des Kelchblatts, Breite des Kelchblatts, Länge des Kronblatts, Breite des Kronblatts sowie Spezies

Verschiedenfarbige Schwertlilie
Virginische Schwertlilie
Biplot von Fishers Schwertlilien-Datensatz
Datensatz
Nummer der Messung Länge des Kelchblatts in cm Breite des Kelchblatts in cm Länge des Kronblatts in cm Breite des Kronblatts in cm Spezies
1 5.1 3.5 1.4 0.2 I. setosa
2 4.9 3.0 1.4 0.2 I. setosa
3 4.7 3.2 1.3 0.2 I. setosa
4 4.6 3.1 1.5 0.2 I. setosa
5 5.0 3.6 1.4 0.3 I. setosa
6 5.4 3.9 1.7 0.4 I. setosa
7 4.6 3.4 1.4 0.3 I. setosa
8 5.0 3.4 1.5 0.2 I. setosa
9 4.4 2.9 1.4 0.2 I. setosa
10 4.9 3.1 1.5 0.1 I. setosa
11 5.4 3.7 1.5 0.2 I. setosa
12 4.8 3.4 1.6 0.2 I. setosa
13 4.8 3.0 1.4 0.1 I. setosa
14 4.3 3.0 1.1 0.1 I. setosa
15 5.8 4.0 1.2 0.2 I. setosa
16 5.7 4.4 1.5 0.4 I. setosa
17 5.4 3.9 1.3 0.4 I. setosa
18 5.1 3.5 1.4 0.3 I. setosa
19 5.7 3.8 1.7 0.3 I. setosa
20 5.1 3.8 1.5 0.3 I. setosa
21 5.4 3.4 1.7 0.2 I. setosa
22 5.1 3.7 1.5 0.4 I. setosa
23 4.6 3.6 1.0 0.2 I. setosa
24 5.1 3.3 1.7 0.5 I. setosa
25 4.8 3.4 1.9 0.2 I. setosa
26 5.0 3.0 1.6 0.2 I. setosa
27 5.0 3.4 1.6 0.4 I. setosa
28 5.2 3.5 1.5 0.2 I. setosa
29 5.2 3.4 1.4 0.2 I. setosa
30 4.7 3.2 1.6 0.2 I. setosa
31 4.8 3.1 1.6 0.2 I. setosa
32 5.4 3.4 1.5 0.4 I. setosa
33 5.2 4.1 1.5 0.1 I. setosa
34 5.5 4.2 1.4 0.2 I. setosa
35 4.9 3.1 1.5 0.2 I. setosa
36 5.0 3.2 1.2 0.2 I. setosa
37 5.5 3.5 1.3 0.2 I. setosa
38 4.9 3.6 1.4 0.1 I. setosa
39 4.4 3.0 1.3 0.2 I. setosa
40 5.1 3.4 1.5 0.2 I. setosa
41 5.0 3.5 1.3 0.3 I. setosa
42 4.5 2.3 1.3 0.3 I. setosa
43 4.4 3.2 1.3 0.2 I. setosa
44 5.0 3.5 1.6 0.6 I. setosa
45 5.1 3.8 1.9 0.4 I. setosa
46 4.8 3.0 1.4 0.3 I. setosa
47 5.1 3.8 1.6 0.2 I. setosa
48 4.6 3.2 1.4 0.2 I. setosa
49 5.3 3.7 1.5 0.2 I. setosa
50 5.0 3.3 1.4 0.2 I. setosa
51 7.0 3.2 4.7 1.4 I. versicolor
52 6.4 3.2 4.5 1.5 I. versicolor
53 6.9 3.1 4.9 1.5 I. versicolor
54 5.5 2.3 4.0 1.3 I. versicolor
55 6.5 2.8 4.6 1.5 I. versicolor
56 5.7 2.8 4.5 1.3 I. versicolor
57 6.3 3.3 4.7 1.6 I. versicolor
58 4.9 2.4 3.3 1.0 I. versicolor
59 6.6 2.9 4.6 1.3 I. versicolor
60 5.2 2.7 3.9 1.4 I. versicolor
61 5.0 2.0 3.5 1.0 I. versicolor
62 5.9 3.0 4.2 1.5 I. versicolor
63 6.0 2.2 4.0 1.0 I. versicolor
64 6.1 2.9 4.7 1.4 I. versicolor
65 5.6 2.9 3.6 1.3 I. versicolor
66 6.7 3.1 4.4 1.4 I. versicolor
67 5.6 3.0 4.5 1.5 I. versicolor
68 5.8 2.7 4.1 1.0 I. versicolor
69 6.2 2.2 4.5 1.5 I. versicolor
70 5.6 2.5 3.9 1.1 I. versicolor
71 5.9 3.2 4.8 1.8 I. versicolor
72 6.1 2.8 4.0 1.3 I. versicolor
73 6.3 2.5 4.9 1.5 I. versicolor
74 6.1 2.8 4.7 1.2 I. versicolor
75 6.4 2.9 4.3 1.3 I. versicolor
76 6.6 3.0 4.4 1.4 I. versicolor
77 6.8 2.8 4.8 1.4 I. versicolor
78 6.7 3.0 5.0 1.7 I. versicolor
79 6.0 2.9 4.5 1.5 I. versicolor
80 5.7 2.6 3.5 1.0 I. versicolor
81 5.5 2.4 3.8 1.1 I. versicolor
82 5.5 2.4 3.7 1.0 I. versicolor
83 5.8 2.7 3.9 1.2 I. versicolor
84 6.0 2.7 5.1 1.6 I. versicolor
85 5.4 3.0 4.5 1.5 I. versicolor
86 6.0 3.4 4.5 1.6 I. versicolor
87 6.7 3.1 4.7 1.5 I. versicolor
88 6.3 2.3 4.4 1.3 I. versicolor
89 5.6 3.0 4.1 1.3 I. versicolor
90 5.5 2.5 4.0 1.3 I. versicolor
91 5.5 2.6 4.4 1.2 I. versicolor
92 6.1 3.0 4.6 1.4 I. versicolor
93 5.8 2.6 4.0 1.2 I. versicolor
94 5.0 2.3 3.3 1.0 I. versicolor
95 5.6 2.7 4.2 1.3 I. versicolor
96 5.7 3.0 4.2 1.2 I. versicolor
97 5.7 2.9 4.2 1.3 I. versicolor
98 6.2 2.9 4.3 1.3 I. versicolor
99 5.1 2.5 3.0 1.1 I. versicolor
100 5.7 2.8 4.1 1.3 I. versicolor
101 6.3 3.3 6.0 2.5 I. virginica
102 5.8 2.7 5.1 1.9 I. virginica
103 7.1 3.0 5.9 2.1 I. virginica
104 6.3 2.9 5.6 1.8 I. virginica
105 6.5 3.0 5.8 2.2 I. virginica
106 7.6 3.0 6.6 2.1 I. virginica
107 4.9 2.5 4.5 1.7 I. virginica
108 7.3 2.9 6.3 1.8 I. virginica
109 6.7 2.5 5.8 1.8 I. virginica
110 7.2 3.6 6.1 2.5 I. virginica
111 6.5 3.2 5.1 2.0 I. virginica
112 6.4 2.7 5.3 1.9 I. virginica
113 6.8 3.0 5.5 2.1 I. virginica
114 5.7 2.5 5.0 2.0 I. virginica
115 5.8 2.8 5.1 2.4 I. virginica
116 6.4 3.2 5.3 2.3 I. virginica
117 6.5 3.0 5.5 1.8 I. virginica
118 7.7 3.8 6.7 2.2 I. virginica
119 7.7 2.6 6.9 2.3 I. virginica
120 6.0 2.2 5.0 1.5 I. virginica
121 6.9 3.2 5.7 2.3 I. virginica
122 5.6 2.8 4.9 2.0 I. virginica
123 7.7 2.8 6.7 2.0 I. virginica
124 6.3 2.7 4.9 1.8 I. virginica
125 6.7 3.3 5.7 2.1 I. virginica
126 7.2 3.2 6.0 1.8 I. virginica
127 6.2 2.8 4.8 1.8 I. virginica
128 6.1 3.0 4.9 1.8 I. virginica
129 6.4 2.8 5.6 2.1 I. virginica
130 7.2 3.0 5.8 1.6 I. virginica
131 7.4 2.8 6.1 1.9 I. virginica
132 7.9 3.8 6.4 2.0 I. virginica
133 6.4 2.8 5.6 2.2 I. virginica
134 6.3 2.8 5.1 1.5 I. virginica
135 6.1 2.6 5.6 1.4 I. virginica
136 7.7 3.0 6.1 2.3 I. virginica
137 6.3 3.4 5.6 2.4 I. virginica
138 6.4 3.1 5.5 1.8 I. virginica
139 6.0 3.0 4.8 1.8 I. virginica
140 6.9 3.1 5.4 2.1 I. virginica
141 6.7 3.1 5.6 2.4 I. virginica
142 6.9 3.1 5.1 2.3 I. virginica
143 5.8 2.7 5.1 1.9 I. virginica
144 6.8 3.2 5.9 2.3 I. virginica
145 6.7 3.3 5.7 2.5 I. virginica
146 6.7 3.0 5.2 2.3 I. virginica
147 6.3 2.5 5.0 1.9 I. virginica
148 6.5 3.0 5.2 2.0 I. virginica
149 6.2 3.4 5.4 2.3 I. virginica
150 5.9 3.0 5.1 1.8 I. virginica

Der Datensatz wird häufig als anfängerfreundlicher Datensatz für Maschinelles Lernen und statistische Verfahren genutzt. Er ist in R, Python und der Software-Bibliothek scikit-learn enthalten.

R-Code zum Erstellen des Streudiagramms

[Bearbeiten | Quelltext bearbeiten]

Der untenstehende Code erzeugt in R das Streudiagramm, das am Anfang dieses Artikels steht.

# Anzeigen des Datensatzes
iris
# Anzeigen der Hilfeseite, welche Informationen über den Datensatz enthält
?iris

# Erstellen eines Streudiagramms, welches alle paarweise Kombinationen der 4
# enthaltenen Attribute anzeigt.
pairs(iris[1:4], main="Iris Data (red=setosa,green=versicolor,blue=virginica)",
      pch=21, bg=c("red","green3","blue")[unclass(iris$Species)])

Python-Code zum Erstellen des Streudiagramms

[Bearbeiten | Quelltext bearbeiten]
from sklearn.datasets import load_iris

iris = load_iris()
iris

Es wird zurückgegeben:

{'data': array([[5.1, 3.5, 1.4, 0.2],
                [4.9, 3. , 1.4, 0.2],
                [4.7, 3.2, 1.3, 0.2],
                [4.6, 3.1, 1.5, 0.2],...
'target': array([0, 0, 0, ... 1, 1, 1, ... 2, 2, 2, ...
'target_names': array(['setosa', 'versicolor', 'virginica'], dtype='<U10'),
...}

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. R.A. Fisher: The use of multiple measurements in taxonomic problems. In: Annals of Eugenics. 7. Jahrgang, Nr. 2, 1936, S. 179–188, doi:10.1111/j.1469-1809.1936.tb02137.x (englisch).
  2. Edgar Anderson: The species problem in Iris. In: Annals of the Missouri Botanical Garden. 23. Jahrgang, Nr. 3, 1936, S. 457–509, doi:10.2307/2394164, JSTOR:2394164 (englisch, biostor.org).
  3. Edgar Anderson: The irises of the Gaspé Peninsula. In: Bulletin of the American Iris Society. 59. Jahrgang, 1935, S. 2–5 (englisch).
  4. UCI Machine Learning Repository: Iris Data Set. In: archive.ics.uci.edu. Abgerufen am 1. Dezember 2017 (englisch).
  5. Ines Färber, Stephan Günnemann, Hans-Peter Kriegel: On Using Class-Labels in Evaluation of Clusterings. International Workshop on Discovering, Summarizing and Using Multiple Clusterings (MultiClust 2010). In: Xiaoli Z. Fern, Ian Davidson, Jennifer Dy (Hrsg.): MultiClust: Discovering, Summarizing, and Using Multiple Clusterings. ACM SIGKDD, 2010 (englisch, sdu.dk [PDF]).