Sequentieller Likelihood-Quotienten-Test
Ein Sequentieller Likelihood-Quotienten-Test kurz SLQT (englisch Sequential Probability Ratio Test, kurz SPRT oder Sequential Likelihood Ratio Test, kurz SLRT), auch sequentieller Plausibilitätsquotiententest genannt, ist in der Statistik ein sequentieller Hypothesentest. Statt mit einem festen Stichprobenumfang einen statistischen Test durchzuführen, wird beim nach jeder gemachten Beobachtung aufgrund aller bisher erfassten Daten getestet, ob eine Entscheidung für oder wider der Nullhypothese getroffen werden kann. Sollte dies nicht der Fall sein, wird die Beobachtung solange fortgesetzt, bis diese Entscheidung getroffen werden kann.
Geschichte
[Bearbeiten | Quelltext bearbeiten]Entwickelt wurde der SLQT von A. Wald 1942 in den USA. Anwendung fand es vor allem in der Rüstungsindustrie, sodass eine allgemeinzugängliche Publikation erst 1947 erfolgte.
Definition
[Bearbeiten | Quelltext bearbeiten]Untersucht wird die Realisierung einer Zufallsgröße mit der Verteilung und dem unbekannten Parameter . Es wird dabei die Nullhypothese gegen die Alternativhypothese getestet. Dabei soll mit höchstens und mit höchstens als Irrtumswahrscheinlichkeit abgelehnt werden.
Für einen festen Stichprobenumfang mit den Beobachtungen ist die Teststatistik als Likelihood-Quotient (Quotient zweier Likelihood-Funktionen) gegeben durch
Wählt man nun Entscheidungsgrenzen A und B, dann gelten für die Annahme der Hypothesen folgende Entscheidungsregeln:
- Fortsetzung der Beobachtung, wenn gilt:
- Annahme von , wenn gilt:
- Annahme von , wenn gilt:
Die Entscheidungsgrenzen
[Bearbeiten | Quelltext bearbeiten]Die Festlegung von A und B muss derart gestaltet sein, das und eingehalten werden. Dies ist der Fall, falls:
Die Wahrscheinlichkeit die untere Grenze zu erreichen bzw. zu überschreiten wird durch die Operationscharakteristik angegeben. Die Wahrscheinlichkeit die Alternativehypothese anzunehmen, und somit die obere Grenze zu überschreiten wird durch die Gütefunktion beschrieben. Dabei gilt das .
Beispiel
[Bearbeiten | Quelltext bearbeiten]Als Beispiel soll die Herleitung des SLQT für einen 1-Stichprobenvergleich bei binären Daten dienen.
In einer klinischen Studie wird ein neues Medikament in einer Phase-II-Studie getestet. Dabei soll die Studie abgebrochen werden, sobald der Anteil an Patienten mit Nierenversagen innerhalb der ersten 24 Stunden ≥ 25 % ist. Ein Anteil von 10 % ist normal und annehmbar. Die vorgegebenen Irrtumswahrscheinlichkeiten sind und .
Nach dem i-ten Patienten liegen y Beobachtungen mit und i-y Beobachtungen ohne Nierenversagen vor. Entsprechend dem Binomialkoeffizienten ist .
Den Fortsetzungsbereich des SLQT erhält man nun durch Logarithmieren und Umformen:
Bei , , , ergibt sich als Fortsetzungsbereich.
Literatur
[Bearbeiten | Quelltext bearbeiten]- Abraham Wald: Sequential Analysis John Wiley & Sons, New York NY u. a. 1947.
- B.K. Ghosh: Sequential Tests of Statistical Hypotheses. Reading: Addison-Wesley 1970
- Peter Bauer, Viktor Scheiber, Franz X. Wohlzogen: Sequentielle statistische Verfahren. Fischer, Stuttgart u. a. 1986, ISBN 3-437-20343-6.
- Albrecht Irle: Sequentialanalyse: Optimale sequentielle Tests. Stuttgart: Teubner 1990
- Holger Wilker: Sequential-Statistik in der Praxis, BoD, Norderstedt 2012, ISBN 978-3848232529.