Smithsche Determinante

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die smithsche Determinante oder auch Smith’sche Determinante bzw. Smith-Determinante, englisch Smith's determinant, ist eine spezielle Determinante, die dem mathematischen Teilgebiet der Zahlentheorie angehört. Sie ist nach dem Mathematiker Henry John Stephen Smith (1826–1883) benannt, der über sie und ihren Zusammenhang mit der eulerschen Phi-Funktion im Jahre 1876 publizierte.[1] Nicht zuletzt war sie Thema einer Anzahl weiterführender Untersuchungen.

Definition der smithschen Determinante

[Bearbeiten | Quelltext bearbeiten]

Für eine gegebene natürliche Zahl werden alle größten gemeinsamen Teiler mit gebildet und in einer quadratischen Matrix angeordnet, wobei als Element der Zeile und der Spalte auftritt. Die aus dieser Matrix gebildete Determinante ist die smithsche Determinante . Es gilt also:[2]

Smith fand die folgende Formel, die die Verbindung zur Phi-Funktion herstellt:[3][A 1]

Für eine gegebene natürliche Zahl gilt:
 .

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Harold N. Shapiro: Introduction to the Theory of Numbers. 1983, S. 74–75, S. 101, S. 104
  2. Harold N. Shapiro: Introduction to the Theory of Numbers. 1983, S. 74
  3. Harold N. Shapiro: Introduction to the Theory of Numbers. 1983, S. 75
  1. Shapiro bezeichnet diese Formel als somewhat unexpected result.
  2. Harold Nathaniel Shapiro promovierte im Jahre 1947 an der Princeton University und lehrte an der New York University ([1]).