Stichprobenfunktion

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

In der Statistik fasst eine Stichprobenfunktion, auch Stichprobenstatistik oder schlicht Statistik, Informationen aus einer Stichprobe in spezifischer Form als Funktion zusammen. Beispiele für Stichprobenfunktionen sind Schätzfunktionen, Prüfgrößen (Teststatistik, Testgröße, Testfunktion) oder die Grenze eines Konfidenzintervalls. Bekannte Stichprobenfunktionen sind das Stichprobenmittel, die Stichprobenvarianz sowie der Stichprobenmedian. Die Wahrscheinlichkeitsverteilung einer Stichprobenfunktion heißt auch Stichprobenverteilung.

Die Zufallsvariablen seien eine Stichprobe des Umfangs , weiterhin sei

eine messbare Funktion. Dann heißt die Zufallsvariable

eine Stichprobenfunktion.

Die Messbarkeit der Funktion garantiert, dass eine Zufallsvariable ist.

In der Statistik und Wahrscheinlichkeitstheorie häufig verwendete Stichprobenfunktionen sind die Summenvariable , die in diesem Zusammenhang auch Stichprobensumme[1] heißt, das Stichprobenmittel , , und .

  • Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler. 7. Auflage. 3: Vektoranalysis, Wahrscheinlichkeitsrechnung, Mathematische Statistik, Fehler- und Ausgleichsrechnung. Springer Vieweg, Wiesbaden 2016, ISBN 978-3-658-11924-9.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Horst Rinne: Taschenbuch der Statistik. 4. Auflage. Harri Deutsch, Frankfurt am Main 2008, ISBN 978-3-8171-1827-4, S. 437.