Symmetrisches Lanczos-Verfahren
Zur Navigation springen
Zur Suche springen
In der numerischen Mathematik ist das symmetrische Lanczos-Verfahren ein Verfahren zur Lösung von Eigenwertproblemen für symmetrische oder hermitesche Matrizen. Es stellt sowohl einen Spezialfall des unsymmetrischen Lanczos-Verfahrens, als auch des Arnoldi-Verfahrens dar.
Der Algorithmus
[Bearbeiten | Quelltext bearbeiten]Es sei eine hermitesche Matrix und ein beliebiger Startvektor ungleich Null gegeben. Dann erstellt der folgende Algorithmus eine Orthonormalbasis des Krylow-Unterraums . Diese kann dann zur Berechnung von Eigenwerten oder der Lösung linearer Gleichungssysteme eingesetzt werden.
- Setze
- for do
- end for
Literatur
[Bearbeiten | Quelltext bearbeiten]- Andreas Meister, Christof Vömel: Numerik linearer Gleichungssysteme. Eine Einführung in moderne Verfahren. 2. Aufl. Vieweg, Wiesbaden 2005, ISBN 3-528-13135-7.