Verzerrtes Produkt
In der Mathematik und der Physik, insbesondere in der Differentialgeometrie und der Allgemeinen Relativitätstheorie, bezeichnet das verzerrte Produkt zweier Pseudo-Riemannschen Mannigfaltigkeiten die Produktmannigfaltigkeit mit der verzerrten Produktmetrik.
Definition
[Bearbeiten | Quelltext bearbeiten]Unter dem verzerrten Produkt zweier Pseudo-Riemannschen Mannigfaltigkeiten und längs einer strikt positiven Funktion versteht man die Produktmannigfaltigkeit ausgestattet mit dem metrischen Tensor . Dabei bezeichnen und die natürlichen Submersionen und den Pullback eines Tensors unter einer Abbildung g zwischen zwei Mannigfaltigkeiten. Dabei wird als Basis und als Faser der Produktmannigfaltigkeit bezeichnet.
Definition verzerrte Metrik
[Bearbeiten | Quelltext bearbeiten]Unter einer verzerrten Produktmetrik versteht man eine Riemannsche oder Lorentzsche Mannigfaltigkeit, deren Metrik durch
dargestellt werden kann. D. h. insbesondere zerfällt die betrachtete Mannigfaltigkeit in das kartesische Produkt einer „y“- und einer „x“-Geometrie, wobei die „x“-Metrik verzerrt wird.
Literatur
[Bearbeiten | Quelltext bearbeiten]- Barrett O’Neill: Semi-Riemannian Geometry. With Applications to Relativity (Pure and applied mathematics; Bd. 103). Academic Press, New York 1983, ISBN 0-12-526740-1.