abc-Vermutung

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die abc-Vermutung ist eine 1985 von Joseph Oesterlé und David Masser aufgestellte mathematische Vermutung. Dabei geht es um den gemeinsamen Inhalt an Primfaktoren von Tripeln zueinander teilerfremder natürlicher Zahlen, bei denen die dritte die Summe der beiden anderen ist. Sie beschreibt in präziser Form das Phänomen, dass das Produkt aller in einem solchen Tripel auftretenden verschiedenen Primfaktoren generell nicht oder nur unwesentlich kleiner als die größte Zahl des Tripels ist. Der additive Zusammenhang eines Tripels erzwingt demnach eine starke Einschränkung für die multiplikative Struktur der Tripel-Zahlen.

Heuristisch beruht die abc-Vermutung darauf, dass natürliche Zahlen mit zahlenmäßig vielen mehrfach auftretenden Primfaktoren – sogenannte hochpotente oder auch „reiche“ Zahlen – vergleichsweise selten vorkommen. In Anlehnung an eine Definition von Barry Mazur kann eine natürliche Zahl als multiplikativ hochpotent bezeichnet werden, wenn ihre Binärdarstellung wesentlich länger ist als die Binärdarstellung ihres größten quadratfreien Teilers, also des Produktes aller enthaltenen verschiedenen Primfaktoren. Dann besagt die abc-Vermutung für zwei teilerfremde hochpotente Zahlen und , dass weder ihre Summe noch ihre Differenz hochpotent sein kann,[1] eventuell mit Ausnahmen, wenn klein ist.

Die Vermutung ist bisher weder bewiesen noch widerlegt, sie gilt aber wegen ihrer Schwierigkeit, und mehr noch wegen ihrer Bedeutung, als prominenter Nachfolger der gelösten Fermatschen Vermutung (neuer „Heiliger Gral“). Dorian Goldfeld bezeichnete sie sogar als wichtigstes ungelöstes Problem der diophantischen Analysis.[2] Es ist bereits eine Vielzahl weitreichender zahlentheoretischer Aussagen bekannt, die aus der Gültigkeit der abc-Vermutung folgen würden.[3]

Ein Tripel heißt abc-Tripel, wenn und teilerfremde positive ganze Zahlen sind und ihre Summe ist. Aufgrund elementarer Eigenschaften der Teilbarkeitsbeziehung ist sowohl zu als auch zu teilerfremd.

Das Radikal einer positiven ganzen Zahl ist das Produkt der unterschiedlichen Primfaktoren von . Primfaktoren, die in der Primfaktorzerlegung von mehrfach vorkommen, werden bei der Berechnung von nur einmal berücksichtigt. Beispielsweise ist

Gilt für ein abc-Tripel die Ungleichung

,

so wird es als abc-Treffer bezeichnet. Beispiele sind (1, 8, 9), (5, 27, 32), (32, 49, 81) und das von Éric Reyssat gefundene Tripel mit , für das der Quotient besonders groß ist. abc-Treffer sind selten. Unter den 15,2 Millionen abc-Tripeln mit gibt es nur 120 abc-Treffer und unter den 380 Millionen abc-Tripeln mit gibt es 276. Sander Dahmen bewies 2006 eine untere Abschätzung für die Anzahl der abc-Treffer bis zu einer gegebenen Schranke und bestätigte damit, dass unendlich viele existieren,[4] allerdings sagt seine Formel lediglich etwa eine Million abc-Treffer unterhalb vorher (und unterschätzt deren Anzahl damit erheblich).

Das weltweite Projekt ABC@Home (begonnen 2007) erstellte durch verteiltes Rechnen eine vollständige Liste aller abc-Treffer für . Es fand 23.827.716 abc-Treffer. Die erste Etappe mit wurde im November 2011 mit 14.482.065 Tripeln abgeschlossen, in den Jahren 2012 bis 2015 wurden 9.345.651 weitere abc-Treffer mit gefunden.[5] Das Projekt wurde durch die Programmierung eines Algorithmus möglich, der den Aufwand zur Ermittlung aller abc-Treffer mit vom offensichtlichen proportional zu auf nahezu proportional zu Rechenschritte reduzierte.[6]

Masser bewies, dass das Verhältnis beliebig klein werden kann, obwohl es meist größer als 1 ist.[7] Er formulierte allerdings mit Oesterlé eine erweiterte abc-Vermutung, dass für jedes eine positive untere Schranke besitzt, sei auch nur ein beliebig kleines größer als .

Genauer formuliert lautet diese abc-Vermutung:

Für jedes reelle existiert eine Konstante , so dass für alle Tripel teilerfremder positiver ganzer Zahlen mit die folgende Ungleichung gilt:
.

Die Vermutung wird für formuliert, da sie für wie erwähnt nachweislich falsch ist.

Man kann die Vermutung auch für beliebige positive oder negative ganze Zahlen formulieren und hat dann nur auf der linken Seite der Ungleichung durch zu ersetzen.

Eine andere, äquivalente Formulierung der Vermutung wird unten gegeben.

Formel für explizit bestimmbare abc-Treffer mit b = 342m+27

[Bearbeiten | Quelltext bearbeiten]

Für Zahlen der Form gibt es Zahlen mit , die mit einen abc-Treffer bilden.[8] Damit alle sind, wählt man

,

so dass sichergestellt ist. Für ergibt dies z. B. ().

m n ...
0 2 262.144
549.755.813.888
7.625.597.484.987
1 5 ...
1.152.921.504.606.846.976
2.417.851.639.229.258.349.412.352
5.070.602.400.912.917.605.986.812.821.504
834.385.168.331.080.533.771.857.328.695.283
2 8 ..., ≈ 1,06 · 1037, ≈ 2,23 · 1043, ≈ 4,68 · 1049 ≈ 9,14 · 1052
3 11 ..., ≈ 9,81 · 1055, ≈ 2,06 · 1062, ≈ 4,31 · 1068 ≈ 9.99 · 1072

Die Eigenschaft der Tripel, abc-Treffer zu sein, kann folgendermaßen gezeigt werden. Zunächst ist

, also .

Berechnet man die Kongruenzen , so erhält man

.

Somit ist und .

Folgerungen und Varianten der abc-Vermutung

[Bearbeiten | Quelltext bearbeiten]

Folgerungen aus der abc-Vermutung

[Bearbeiten | Quelltext bearbeiten]

Die Vermutung konnte bisher zwar nicht bewiesen werden, zieht allerdings eine Menge interessanter Konsequenzen nach sich. Viele gelöste und ungelöste diophantische Probleme lassen sich aus dieser Vermutung folgern. Insbesondere der sehr komplexe Beweis des Großen Fermatschen Satzes würde sich auf eine Seite reduzieren. Zu den Sätzen bzw. Vermutungen, die sich aus einem Beweis der abc-Vermutung ergeben würden, zählen:

  • Satz von Thue-Siegel-Roth, wie Machiel van Frankenhuysen 1999 zeigte.
  • Großer Fermatscher Satz
  • Vermutung von Mordell (von Gerd Faltings bewiesen), wie Noam Elkies 1991 zeigte. Die Vermutung behauptet die Endlichkeit der Anzahl von Punkten einer algebraischen Kurve vom Geschlecht größer 1 über einem Zahlkörper K. Aus der abc-Vermutung folgt sogar eine Schranke für die Größe (genauer der sogenannten Höhe) der Punkte auf den Kurven über K (in Abhängigkeit von der in der abc-Vermutung auftretenden Konstante). Die abc-Vermutung liefert also eine effektive Version der Mordellvermutung, im Gegensatz zu den bis heute bekannten Beweisen.[9]
  • Erdős-Woods-Vermutung (M. Langevin 1993)
  • Catalansche Vermutung
  • Fermat-Catalan-Vermutung
  • die Existenz von unendlich vielen Nicht-Wieferich-Primzahlen. Allgemeiner zeigte Joseph Silverman 1988, dass aus der abc-Vermutung folgt, dass es für , , unendlich viele Primzahlen gibt, für die nicht durch teilbar ist.
  • die schwache Form der Hall-Vermutung, die eine asymptotische untere Schranke für den Betrag der Differenz von Kubikzahlen und Quadratzahlen liefert.
  • die Vermutung von Lucien Szpiro (eine Ungleichung zwischen Führer und Diskriminante elliptischer Kurven über den rationalen Zahlen). Diese Vermutung ist sogar äquivalent zur abc-Vermutung.[10] Genauer handelt es sich um die verallgemeinerte Szpiro-Vermutung (siehe unten).
  • die Pillai-Vermutung von S. S. Pillai.
  • eine effektive Form von Siegels Theorem über ganzzahlige Punkte auf algebraischen Kurven.[11]

Szpiro’s Vermutung in der Theorie elliptischer Kurven folgt aus der abc-Vermutung, wie Oesterlé und Nitaj zeigten. Die Vermutung lautet: Für jedes gibt es eine Konstante so dass für jede elliptische Kurve mit minimaler Diskriminante und Führer gilt:

Die verallgemeinerte Szpiro-Vermutung,[12] die äquivalent zur abc-Vermutung ist, lautet: Für jedes und gibt es eine Konstante , so dass für alle ganze Zahlen , für die und der größte Primfaktor von , kleiner gleich ist, gilt:

Als Beispiel wird die abc-Vermutung auf den großen Fermatschen Satz angewandt, dass

keine Lösung in positiven ganzen Zahlen (die als relativ prim angenommen werden) hat für

Setzt man in der Ungleichung der abc-Vermutung ein und benutzt

,

lautet die Ungleichung dann:

Ersetzt man in dieser Ungleichung durch , dann hat man für eine obere Schranke für z:

Das heißt, die Fermat-Gleichung kann nur endlich viele Lösungen haben und ab einem bestimmten Wert des Exponenten , der nur von abhängt, das durch die abc-Vermutung gegeben wäre, überhaupt keine Lösung mehr, da . Man braucht nur alle Fälle bis zu dieser Grenze mit anderen Methoden zu überprüfen, um die Fermat-Vermutung zu beweisen (für eine große Zahl von Exponenten war das Zutreffen der Vermutung schon vor dem Beweis von Andrew Wiles bekannt).

Spezielle Formen der abc-Vermutung und schwache abc-Vermutung

[Bearbeiten | Quelltext bearbeiten]

1996 schlug Alan Baker eine Verschärfung der Vermutung vor und präzisierte sie 2004.[13] Während die Gesamtgröße der multiplikativen Bausteine der am Tripel beteiligten Zahlen kennzeichnet, ist die Anzahl ihrer verschiedenen Primfaktoren ein Maß für ihre Detailliertheit. Baker vereinigte beide Maße und gelangte zu einer abc-Vermutung mit einer absoluten, von unabhängigen, Konstanten

.

Wenn man darin berücksichtigt, dass die rechte Seite ein Minimum etwa bei besitzt, und nach der Ersetzung im Nenner nach unten durch abschätzt, erhält man eine von freie Version

, eine absolute Konstante.

Andrew Granville bemerkte, dass der letzte Faktor nahezu äquivalent zu Θ(r) ist, der Anzahl der natürlichen Zahlen bis r, die nur durch Primfaktoren von r teilbar sind. Damit ergibt sich seine Vermutung zu

, eine absolute Konstante.

Eine Untersuchung an den damals 196 bekannten extremalen abc-Tripeln zeigte, dass vermutlich und gewählt werden kann. Eventuell muss der zweite Wert anhand neuerer numerischer Ergebnisse noch leicht modifiziert werden.

Es gibt auch schwächere Formen der abc-Vermutung, die man zu beweisen versucht. Wird in der ursprünglichen Formulierung der abc-Vermutung und gleich 1 gesetzt, hat man eine Variante der schwachen abc-Vermutung (mit denselben Voraussetzungen an die abc-Tripel wie oben):

Aus dieser Variante folgt sofort (durch eine ähnliche Argumentation wie oben) die Gültigkeit der Fermat-Vermutung für Potenzen größer als fünf.[14] Allgemeiner wird die schwache abc-Vermutung häufig über eine etwas andere Formulierung der abc-Vermutung eingeführt.

Sei die Qualität (auch Potenz, abc-ratio) eines ()-Tripels, also die Lösung von mit und damit ein Maß des Überschusses von c über den gemeinsamen „Primzahlinhalt“ r des Tripels. Umfangreiche numerische Suche, zum Beispiel in dem ABC@Home-Projekt, hat bisher einen maximalen Wert von etwa für q ergeben (gefunden von Eric Reyssat, s. o.). Insgesamt konnten in 34 Jahren lediglich 241 abc-Tripel mit einer Qualität entdeckt werden.[15] Die eigentliche abc-Vermutung, auch starke abc-Vermutung genannt, besagt dann, dass

für ein beliebiges nur endlich viele Lösungen hat.

Der Wert 1 ist dabei die bestmögliche untere Grenze für . Setzt man , gibt es unendlich viele Lösungen. Aber schon ein beliebig kleiner Wert über 1 bewirkt nach der starken abc-Vermutung, dass die Anzahl der Lösungen endlich ist.

Die schwache abc-Vermutung besagt, dass eine obere Schranke hat.[16] In dem oben angegebenen Spezialfall war die obere Schranke 2 vermutet worden. Aus der starken abc-Vermutung folgt die Gültigkeit der schwachen abc-Vermutung, aber nicht umgekehrt.

In symmetrischer Form lässt sich die Vermutung auch als Aussage des Verhältnisses der Höhe , die die Größe der beteiligten Zahlen misst, zum Radikal ausdrücken, das den Primzahlinhalt misst. Dann besagt die starke abc-Vermutung, dass für jedes nur endlich viele teilerfremde Lösungen , , hat mit:[17]

Jeffrey Lagarias und Kannan Soundararajan stellten der abc-Vermutung eine „xyz-Vermutung“ zur Seite für den Fall, dass alle Primfaktoren des Radikals eines Tripels durch eine kleine Konstante S (Glattheit, Smoothness) beschränkt sind, das heißt . Sie besagt, dass für nur endlich viele abc-Tripel existieren mit .[18]
B. de Weger ermittelte hierzu in den Ergebnissen des ABC@Home-Projektes dasjenige Tripel mit S = 43 und (vermutlich) größtem z als

[19] (mit der Qualität 1,2676)

Conrey, Holmstrom und McLaughlin fanden darin als Tripel mit maximalem Glattheitsindex

[20] (mit der Qualität 1,1333)

Weitere Bewertungen eines abc-Treffers

[Bearbeiten | Quelltext bearbeiten]

Bereits 1986 zeigten Cameron L. Stewart und Robert Tijdeman, dass die „Qualitäts“-Bewertung der abc-Treffer (mit den Bezeichnungen und , )

für wachsendes nicht zu schnell gegen 1 konvergieren kann und damit erneut, dass es kein für gibt. Sie bewiesen die Existenz von unendlich vielen abc-Tripeln mit

für jedes .

Im Jahre 2000 verschärfte Machiel van Frankenhuysen diese Aussage mit [21] Das legt nahe zu untersuchen, ob ein gegebenes Tripel mit der Bewertung

die Schranke übersteigt oder nicht, und die Verteilung der gefundenen extremalen Beispiele zu analysieren. Folgende theoretische (heuristische) Überlegungen lassen vermuten, dass diese Bewertung auf der Menge der abc-Treffer unbeschränkt groß werden kann.[22]

Aus bewiesenen Ergebnissen über die Verteilung der natürlichen Zahlen mit unterhalb einer gegebenen Schranke und aus (begründeten und vielfach bestätigten, aber unbewiesenen) Annahmen über die Zufälligkeit der Primfaktorzerlegung in unstrukturierten Mengen natürlicher Zahlen konnte van Frankenhuysen die strengere untere Abschätzung mit kleinerem Nenner

gilt unendlich oft

herleiten. Je nach Ansatz kann man ein bzw. ein wählen, das konnte nicht geklärt werden. Die zweite Variante wurde ebenfalls von C. L. Stewart und G. Tenenbaum gefunden (2007, vgl.[23]) und mit Olivier Robert 2014 verschärft.[24] Eine einfache Umformung lässt daraus die elegante Bewertung „merit“

als quadriertes Analogon zu mit der angestrebten Testgröße ansetzen.

Das derzeitige Weltrekord-Tripel bezüglich beider Bewertungen mit und wurde am 28. Oktober 2011 von Ralf Bonse entdeckt[25] und lautet

, ( ist offensichtlich nicht multiplikativ hochpotent)
,
.

Von besonderem Interesse sind solche abc-Tripel, die den Abfall der Qualität mit wachsendem Betrag von nach unten beschränken. Ein abc-Tripel heißt (englisch) „unbeaten“ (dt. sinngemäß „unübertroffen“), wenn jedes bekannte abc-Tripel mit größerem eine kleinere Qualität aufweist.[5]

abc-Vermutung für Polynome

[Bearbeiten | Quelltext bearbeiten]

Wilson Stothers und Richard Mason bewiesen 1983[26][27] unabhängig voneinander folgenden, bis dato unbekannten Satz für Polynome:

Seien teilerfremde, nicht-konstante Polynome mit . Dann ist

wobei die Anzahl der verschiedenen Nullstellen von ist. Das ist gewissermaßen das „Funktionenkörper“-Analogon der abc-Vermutung. Sein Beweis ist relativ einfach[28] und wie auch im Fall der abc-Vermutung folgt daraus z. B. der Fermatsche Satz für Polynome. Die Übersetzung vom Polynom-Fall in die abc-Vermutung für ganze Zahlen erfolgt dadurch, dass man setzt, wobei das Produkt der „Primfaktoren“ von ist, erstreckt sich über alle Wurzeln von , und den Grad durch sein Analogon den Logarithmus ersetzt (da  ).

Diese „Modell“-Version der abc-Vermutung war allerdings nicht die unmittelbare Motivation für die Vermutung durch Oesterlé und Masser. Das Motiv für die Vermutung ergab sich auch nicht aus numerischen Rechnungen, sondern vielmehr aus tiefliegenden Untersuchungen über elliptische Kurven in der Zahlentheorie,[29] die sich teilweise in der verwandten Vermutung von Lucien Szpiro widerspiegeln (s. o.).

Bisher wurden folgende Ungleichungen für c und rad(abc) bewiesen:

1986, C.L. Stewart und R. Tijdeman:

1991, C.L. Stewart und Kunrui Yu:

1996, C.L. Stewart und Kunrui Yu:

wobei C1 eine feste Konstante ist und C2 sowie C3 positive leicht berechenbare Konstanten in Abhängigkeit von ε.

Im August 2012 veröffentlichte Shin’ichi Mochizuki einen möglichen Beweis,[30] der derzeit geprüft wird.[31] Mochizuki ging von der zur abc-Vermutung äquivalenten Vermutung von Szpiro über elliptische Kurven aus und wandte umfangreiche, von ihm erst jüngst neu entwickelte und bislang nur wenigen bekannte Konzepte und Methoden an. Im März 2015 wurde an seinem Institut in Kyoto ein zwölftägiger Workshop über die Inter-Universale Teichmüller Theory durchgeführt, und das Clay Mathematics Institute führte im Dezember 2015 einen weiteren fünftägigen Workshop durch.[32][33] Der Beweis hat aber auch sechs Jahre nach seiner Veröffentlichung die meisten Spezialisten nicht überzeugt, und die Korrektheit wird von prominenten Mathematikern bezweifelt.[34] Jakob Stix und Peter Scholze gaben 2018 bekannt, eine fundamentale Lücke im Beweis von Mochizuki ausgemacht zu haben.[35][36] Mochizuki hält weiter an seinem Beweis fest.[37][38] Am 3. April 2020 berichtete Nature, dass sein 600 Seiten umfassender Beweis vom Journal Publications of the RIMS zur Veröffentlichung angenommen wurde.[39] Mochizuki ist selbst Chefredakteur des Journals.[40] Scholze teilte in einer E-Mail an Nature mit, dass sich an seiner Kritik an dem Beweis nichts geändert habe; in einer im August 2021 erschienenen Rezension im mathematischen Referateorgan zbMATH bezeichnet er die vorgelegte Theorie dementsprechend als „klar unzureichend für einen Beweis der abc-Vermutung“.[41] Der veröffentlichte Beweis ist gegenüber den Preprints im Wesentlichen unverändert und berücksichtigt die Kritik von Scholze und Stix nur in ein paar Anmerkungen. Die FAZ kommentierte dies dahingehend, dass die „offizielle Publikation des Beweises“ trotz der nicht ausgeräumten fachlichen Kritik „ein unerhörter Vorgang“ sei und damit „die Gültigkeit eines Stücks [...] bedeutsamer Mathematik nun eine Frage des Dafürhaltens“ sei.[37]

  • ABC@Home Projekt für verteiltes Rechnen, in dem der Zahlenraum bis 263 untersucht wurde.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Noam Elkies: The ABC´s of Number Theory (PDF; 417 kB)
  2. The Amazing ABC Conjecture (Memento vom 28. Juni 2013 im Internet Archive)
  3. Gerhard Frey: Die ABC-Vermutung. Spektrum d. Wiss. Februar 2009, S. 70–77
  4. Sander Roland Dahmen: Lower bounds for numbers of ABC-hits. (PDF; 113 kB) In: Journal Number Theory, 128, 2008, Nr. 6, S. 1864–1873
  5. a b Bart de Smit - ABC triples. Abgerufen am 13. September 2023.
  6. Willem Jan Palenstijn: Enumerating ABC triples. (Memento vom 3. Februar 2014 im Internet Archive; PDF; 816 kB)
  7. Ein einfacher Beweis nach Wojtek Jastrzebowski und Dan Spielman findet sich bei Lang, Elemente der Mathematik, Bd. 48, 1993, S. 94. Ihr Gegenbeispiel zur abc-Vermutung mit ist . Man beweist durch Induktion, dass b durch teilbar ist. Das ergibt eine Ungleichung, die nicht für alle k erfüllt sein kann.
  8. Robin Weezepoel (Memento vom 27. Juli 2014 im Internet Archive)
  9. Machiel van Frankenhuysen: The ABC conjecture implies Roth’s theorem and Mordell’s conjecture, Matemática Contemporânea, Band 16, 1999, S. 45–72
  10. William Stein: Szpiro and ABC (Memento vom 17. Februar 2009 im Internet Archive) (englisch)
  11. arxiv:math/0408168 Andrea Surroca, Siegel’s theorem and the abc conjecture, Riv. Mat. Univ. Parma (7) 3, 2004, S. 323–332
  12. Waldschmidt, Lecture on the abc conjecture and some of its consequences, in: Cartier u. a., Mathematics in the 21st century, Springer 2015, S. 214
  13. Alan Baker: Logarithmic forms and the abc-conjecture. In: Györy, Pethö, T. Sos (ed.) Number Theory, Eger 1996., de Gruyter 1998, S. 37–44. Experiments on the abc-conjecture. Publ. Math. Debrecen 65 (2004), S. 253–260
  14. zum Beispiel Lukas Pottmeyer: Die Dichte quadratfreier Werte ganzzahliger Polynome, Diplomarbeit, Universität Dortmund, 2009, Seite III, PDF-Datei (PDF; 390 kB)
  15. Bart de Smit: Update on ABC-triples (auch weiterführende numerische Ergebnisse)
  16. ABC at Home Webseite (Memento vom 18. November 2009 im Internet Archive)
  17. Lagarias, Soundararajan: Smooth solutions of the abc conjecture. In: J. Theorie Nombres Bordeaux, Band 23, 2011, S. 209, arxiv:0911.4147 Preprint
  18. Smooth Solutions to the Equation A + B = C (Memento vom 26. Dezember 2015 im Internet Archive) (PDF; 237 kB) Preprint 2010.
  19. Benne de Weger: Numerical data related to the Lagarias-Soundararajan xyz-conjecture. (PDF; 381 kB) überarbeiteter Preprint 2012.
  20. J. B. Conrey, M. A. Holmstrom, T. L. McLaughlin: Smooth Neighbors, Experimental Mathematics 22 (2013), S. 195–202
  21. Machiel van Frankenhuysen: A lower bound in the abc conjecture. J. Number Theory 82 (2000), S. 91–95
  22. Machiel van Frankenhuysen: Hyperbolic spaces and the abc conjecture. Dissertation Nijmegen 1995
  23. Carl Pomerance: Computational Number Theory (Übersichtsartikel, pdf; 249 kB)
  24. O. Robert, C. L. Stewart, G. Tenenbaum: A refinement of the abc conjecture. (Preprint, pdf; 322 kB)
  25. Bart de Smit / ABC triples / by merit
  26. R. Mason: Diophantine equations over function fields. Cambridge University Press 1984
  27. W. W. Stothers: Polynomial identities and Hauptmoduln. Quarterly Journal Mathematics, Oxford, II. Ser., Band 32, 1981, S. 349–370. Auch Joseph Silverman bewies unabhängig den Satz, der auch PQR-Theorem oder Stothers-Mason-(Silverman)-Theorem genannt wird.
  28. siehe z. B. Serge Lang: Elemente der Mathematik. Band 48 (1993), S. 91f
  29. Oesterlé zur Motivation hinter ihrer Postulierung der abc-Vermutung (Memento vom 4. März 2016 im Internet Archive)
  30. Mochizuki: Inter-Universal Teichmüller Theory IV: Log-Volume Computations and Set-Theoretic Foundations, Preprint August 2012, online auf seiner Homepage
  31. Holger Dambeck: Japaner präsentiert Lösung für Primzahlen-Rätsel, Spiegel Online, 26. September 2012
    Philip Ball: Proof claimed for deep connection between prime numbers, Nature News, 10. September 2012
    Caroline Chen: The paradox of the proof. (Stand vom 9. Mai 2013)
    Peter Woit: Latest on abc. (Stand vom 19. Dezember 2013)
  32. IUT Theory of Shinichi Mochizuki am CMI
  33. Biggest mystery in mathematics in limbo after cryptic meeting. Nature
  34. Frank Calegari: The ABC conjecture has (still) not been proved. 17. Dezember 2017
  35. Erica Klarreich: Titans of Mathematics Clash Over Epic Proof of ABC Conjecture. Quanta Magazine, 20. September 2018
  36. Webseite von Mochizuki dazu mit dem Report von Scholze und Stix und Antworten von Mochizuki
  37. a b Ulf von Rauchhaupt: ABC-Vermutung: Zahlentheorie am Limit. In: faz.net. 9. April 2020, ISSN 0174-4909 (faz.net [abgerufen am 10. April 2020]).
  38. Shinichi Mochizuki: March 2018 Discussions on IUTeich. Abgerufen am 10. April 2020.
  39. Davide Castelvecchi: Mathematical proof that rocked number theory will be published. In: Nature. Band 580, 3. April 2020, S. 177–177, doi:10.1038/d41586-020-00998-2 (nature.com [abgerufen am 10. April 2020]).
  40. Publications of the Research Institute for Mathematical Sciences
  41. Peter Scholze: Zbl 1465.14002. (PDF) In: zbMATH. Abgerufen am 14. August 2021.