Angewandte Geophysik

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Die Angewandte Geophysik ist jenes Teilgebiet der Geophysik, in dem alle praxisorientierten und wirtschaftlich bedeutungsvollen Verfahren zusammengefasst werden. Gemeinsam ist ihnen das Ziel, die Gesteinskörper und Schichtungen der Erdkruste zu erkunden. Ein wichtiges Teilgebiet ist die Erkundung von Lagerstätten, die Exploration genannt wird. Die Angewandte Geophysik bewegt sich dabei an der Schnittstelle zwischen Natur- und Ingenieurwissenschaften.

Methodische Übersicht

[Bearbeiten | Quelltext bearbeiten]

Die Geophysik kennt (wie auch andere Geowissenschaften) eine Vielzahl an Methoden – insbesondere wegen der vielfältigen Gestalt des Erdkörpers, seiner Gesteine, unterirdischen Strukturen, seiner Fluide und austretenden Gase. Man gliedert die Methoden der Geophysik üblicherweise nach ihren 6–8 wichtigsten Mess- und Auswertungsmethoden:

  1. Potentialverfahren – vor allem Schwere- und Magnetfeld der Erdkruste
  2. Wellenverfahren – Erkundung des Untergrundes mit seismischen Wellen (natürliche und künstliche Erdbeben)
  3. elektromagnetische Verfahren, insbesondere Geoelektrik und Bodenradar
  4. radiometrische Verfahren
  5. geochemisch-physikalische Verfahren und Gasvermessung
  6. Geothermik
  7. In-situ-Verfahren (Bohrloch-Geophysik und bodenmechanische Untersuchungen)

Die Methodengruppen 1 und 2 reichen zwar bis in große Tiefen, liefern aber in jeder einzelnen Gruppe prinzipiell mehrdeutige Ergebnisse (siehe auch Umkehrproblem der Potentialtheorie). Dasselbe trifft oft für die 3. Gruppe und manche In-situ-Verfahren zu.

Im Regelfall ergänzen sich aber Gravimetrie, Magnetik und Seismik untereinander und mit den Labormethoden. Auch werden üblicherweise zur Erzielung eindeutiger Interpretationen möglichst viele geologische Daten eingebracht – was in erster Linie in Aufschlüssen erfolgt und u. a. die Erfassung der dort angetroffenen Gesteinsarten, deren Dichte (etwa 2,0 bis 3 g/cm³) und der Lage ihrer Schichten im Raum (Streichen, Fallen) umfasst.

Potentialverfahren

[Bearbeiten | Quelltext bearbeiten]

Sie nützen die Besonderheiten physikalischer Felder (in der Fachsprache der Potentialtheorie: wirbelfreie Vektorfelder) und ihre Wirkungen auf die Messpunkte an der Erdoberfläche. Damit lassen sich Dichteunterschiede bzw. Schichtungen in der Tiefe bestimmen:

Genaue Messungen des Erdschwerefeldes (Schwerkraft und evtl. auch Schweregradienten) gestatten die Ortung von horizontalen und vertikalen Unterschieden der Gesteinsdichte im Untergrund. Die festgestellten Schwereanomalien lassen auf Lagerstätten, Hohlräume, Felsauflockerung (Felsmutung) etc. schließen.
In der theoretischen Geophysik dienen Schweremessungen zusätzlich zur Bestimmung der Krustendicke, des großräumigen Schalenaufbaus der Erde und ihres Dichteausgleichs (Isostasie).

Die Messungen erfolgen mit sogenannten Gravimetern, die nach dem Prinzip einer äußerst feinen Federwaage arbeiten und auch in der Geodäsie (Erdmessung) verwendet werden. Es gibt Relativ- und Absolutgravimeter, früher verwendete man auch die Eötvös'sche Drehwaage, die horizontale Schweregradienten messen kann.

Eine detaillierte Vermessung des Erdmagnetfeldes auf dem Boden ("terrestrisch") oder vom Flugzeug oder Hubschrauber ("Aeromagnetik") spiegelt die Existenz magnetischer und magnetisierbarer Gesteine im Untergrund wider. Bei der Modellierung des zugehörigen Potentials sind Querverbindungen zum Schwerepotential der Gravimetrie möglich.

Geoelektrik (siehe unten)

[Bearbeiten | Quelltext bearbeiten]

Die geoelektrischen Verfahren arbeiten teilweise ebenfalls mit Potentialfeldern, werden aber zumeist in einer eigenen Gruppe zusammengefasst (siehe Kapitel 4).

Wellenverfahren (Seismik)

[Bearbeiten | Quelltext bearbeiten]

erlauben die Erkundung von Erdkruste und evtl. Erdmantel mit natürlichen und künstlichen Erdbeben. Bei der Ausbreitung dieser Erschütterungen unterteilt man die mechanischen Wellen in

  • longitudinale Wellen (Stoßwellen, auch P-Wellen genannt)
  • transversale Wellen oder Scherwellen (S-Wellen)
  • und spezielle Wellenarten (z. B. an einer Grenzfläche geführte Wellen, Flözwellen)

Die Reflexion bzw. Brechung der Wellen im Erdinnern lässt Rückschlüsse auf seine Schichtung zu, wobei die Eindringtiefe von der Stärke der Beben bzw. Sprengungen abhängt. Der Mess- und Rechenaufwand ist erheblich, kann allerdings (mit gewissen Unsicherheiten) dreidimensionale-Modelle liefern.

Messung und Interpretation natürlicher Erdbeben. Diese Methoden dienen aber häufiger der allgemeinen als der angewandten Geophysik. Seit den 1920er-Jahren konnten damit die Tiefe von Erdmantel und Erdkern bestimmt werden, in den letzten Jahrzehnten auch feinere Untergliederungen, insbesondere im oberen Erdmantel.

Messung und Interpretation von künstlichen Erdbeben (Schlag- und Sprengseismik) und künstlich erzeugter Vibrationen. Die Bebenwellen werden an den Grenzen geologischer Formationen gebeugt oder reflektiert, wenn sich dort die Dichte oder die Elastizität des Gesteins ändert. Im Detail unterscheidet man die Refraktionsseismik von der tiefer reichenden, aber komplizierteren Reflexionsseismik.

Die Geoseismik ist vor allem für die Exploration (Erkundung) von Erdöl und Erdgas wichtig, weil sich diese Kohlenwasserstoffe in typischen, aufgewölbten Strukturen ansammeln. Die Stoß- und Scherwellen werden von Geophonen aufgezeichnet, die in Profilen oder flächenhaft ausgelegt und mit langen Kabeln verbunden sind. Die künstlichen Beben werden auf verschiedene Weise ausgelöst:

Elektromagnetische Verfahren

[Bearbeiten | Quelltext bearbeiten]

Die geoelektrischen Verfahren arbeiten teilweise zwar mit Potentialfeldern (siehe Kapitel 2), werden aber meist in einer eigenen Gruppe zusammengefasst.

Die Vermessung natürlicher und künstlicher elektrischer Felder lässt vor allem auf Änderungen des Widerstandes schließen. Damit kann man unterirdische Schichtungen und einige Gesteinsparameter bestimmen, sowie wasserhaltige Schichten (Grund- und Tiefenwässer) und Porenstrukturen erkunden. Man kann die Methoden folgendermaßen gliedern:

Das Bodenradar oder "Ground Penetrating Radar" (GPR) dient vor allem zur Ortung von kleineren Unregelmäßigkeiten und metallhaltigen Strukturen im Untergrund, etwa bei der Untersuchung von Müllhalden oder bereits abgedeckten Deponien, aber auch in der Archäologie zum Auffinden von alten Grundmauern etc.

Radiometrie und Radioaktivität

[Bearbeiten | Quelltext bearbeiten]

(Eine Kurzbeschreibung wäre noch einzufügen.)

Messung der Erdwärme beziehungsweise des Wärmeflusses, Interpretation hinsichtlich der Wärmeleitfähigkeit und der Temperaturen im Untergrund.

Geochemisch-physikalische Methoden

[Bearbeiten | Quelltext bearbeiten]

In-situ-Methoden

[Bearbeiten | Quelltext bearbeiten]

Ihre Messprinzipien sind teilweise mit den oben angeführten Methoden identisch. Unter den direkt an den Gesteinen vorgenommenen Messungen unterscheidet man vor allem:

Labormessungen an Handstücken und Proben

[Bearbeiten | Quelltext bearbeiten]

Zur raschen und sicheren Beurteilung werden oft "Handstücke" von typischen Gesteinen im Gelände aufgelesen, aus dem Felsen gebrochen oder durch Kernbohrungen gewonnen. Ein erfahrener Geologe kann so bereits wichtige Aussagen treffen.

Im Labor untersucht man dann wichtige Gesteinsparameter genauer: spezifische Dichte, Poren- und Wassergehalt, Elastizitätsmodule, elektrischer Widerstand, Körnung der Bestandteile etc. Bei der Dichtebestimmung – die für Potentialmethoden und die Seismik (siehe obige Kapitel 2 und 3) entscheidend sein kann – muss man genau zwischen bergfeuchtem Zustand und Trockendichte unterscheiden.

Bohrloch-Geophysik

[Bearbeiten | Quelltext bearbeiten]

Zusätzlich zu den Oberflächenmessungen zählen hierzu Mess-Sonden in Bohrlöchern, beispielsweise als Dichte-Log, für elektrischen Widerstand, für Wärmeleitfähigkeit und für Gammastrahlung (siehe auch Massenspektrometer). Ferner werden akustische Emissionssonden und Magnetometer eingesetzt.

Siehe auch Kontinentales Tiefbohrprogramm.

Zu dieser Gruppe – die sich ebenfalls der o.a. Prinzipien bedient – zählen alle Messungen aus der Luft (Flugzeug, Helikopter), mit denen man die geophysikalischen Oberflächen- und Bohrlochmessungen ergänzt. Häufig angewandt werden vor allem Aerogravimetrie und Aeromagnetik, um großflächige Erstuntersuchungen durchzuführen damit später detaillierter zu untersuchende Bereiche auszuscheiden.

Zusätzlich zu den bekannten geophysikalischen Gesetzgebungen müssen speziell Höhen- und Rotationskorrekturen beachtet werden.

Querverbindungen

[Bearbeiten | Quelltext bearbeiten]

Bei fast allen oben angeführten Methoden und Methodensgruppen ergeben sich Querverbindungen zu anderen geowissenschaftlichen Fächern. Beispiele dafür sind:

Doch wirken die Ergebnisse der angewandten Geophysik auch auf die anderen Bereiche innerhalb der Geophysik zurück – vor allem

Alle diese Zusammenhänge erleichtern der angewandten Geophysik die erfolgreiche Suche nach unterirdischen Strukturen und Standortanalysen, sowie nach Lagerstätten, Vorkommen von Wasser oder Erzen. Die vielen Abhängigkeiten komplizieren allerdings auch die Theorie und die Software.

Ziviltechniker und Organisationen

[Bearbeiten | Quelltext bearbeiten]

Speziell die Sedimentbecken – auf denen der Großteil der Menschheit lebt – sind der Geophysik gut zugänglich; für deren angewandte Forschung gibt es in der BRD seit 2002 ein Schwerpunktprogramm. Auch zur Ermittlung von potentiell geeigneten Endlagerstätten für Abfälle, für Atommüll und für Deponien werden Methoden der Geophysik – nebst anderen Fachgebieten – angewandt. In der Praxis arbeiten hier vielfach Ziviltechniker im selbständigen Beruf und in Kooperation mit Ingenieurgeologen. Nur bei größeren, überwiegend der Forschung dienenden Projekten geben Institute von Hochschulen, von Akademien oder Fachabteilungen von (Landes)-Regierungen den Ton an.

Der weite Bereich des Umweltschutzes hat viele, vor allem jüngere Geophysiker dazu gebracht, sich auf diesen neueren Feldern zu spezialisieren. Auch gehen bei fast allen größeren Bauvorhaben genaue Untersuchungen des Baugrundes voraus (Standfestigkeit, Wasserverhältnisse usw.) und neuerdings in der Landwirtschaft Methoden der "Agrogeophysik".

Die verschiedenen Gebiete haben ihre jeweils eigenen Organisationsformen auf fachlichen und regionalen Ebenen – etwa die technischen Aufgabenbereiche und die RohstoffErkundung (siehe auch geophysikalische Prospektion)
Die länderübergreifenden Untersuchungs- und Forschungsthemen sind eher im Rahmen der IUGG (Internationale Union für Geodäsie und Geophysik) und ihren sieben Verbandsmitgliedern angesiedelt, die alle vier Jahre ihre Generalversammlung abhält und dabei über 5000 Fachleute zu großen Kongressen vereint. Dazwischen finden jährlich einige hundert Tagungen für spezielle Bereiche statt, beispielsweise im Rahmen der europäischen EGU und der amerikanischen AGU.

  • László Egyed: Physik der festen Erde, 370 S., Akadémiai Kiadó, Budapest 1969
  • Friedrich Bender: Angewandte Geowissenschaften, Band II: Angewandte Geophysik, 766 S., Enke-Verlag, Stuttgart 1985