Benutzer:Pellogrino/Thomas Schlumprecht
Vorlage:Infobox scientist Thomas Berthold Schlumprecht (born October 19, 1954, in Munich, Germany) is an American-German mathematician. He is known for his contributions to several fields of Analysis, including Functional Analysis, Convex Geometry, and Probability Theory.[1][2]
Biography
[Bearbeiten | Quelltext bearbeiten]Thomas Schlumprecht is a mathematician who received his Ph.D. degree from Ludwig Maximilian University of Munich in 1988,[3] under the supervision of Jürgen Batt. From 1988 to 1991, he served as a postdoctoral fellow at the University of Texas at Austin. Following this, he held the position of assistant professor at Louisiana State University in Baton Rouge from 1991 to 1992.[3] Since 1992, Schlumprecht has been a faculty member in the Department of Mathematics at Texas A&M University in College Station, where he currently holds the rank of Professor.[3] Moreover, since 2013, he has also served as an adjunct professor at the faculty of Electrical Engineering, Czech Technical University,[4][3] located in Prague, Czech Republic.
He served as an International editor of the Glasgow Mathematical Journal from 1999 to 2018.[2][5] He held the position of associate editor for the Proceedings of the American Mathematical Society[6] from 2010 to 2017 and has been an associate editor of the Journal of Functional Analysis since 2017.
He was appointed a Fellow of the American Mathematical Society in 2016.[1]
Work
[Bearbeiten | Quelltext bearbeiten]Thomas Schlumprecht has made contributions to mathematical research, authoring 77 research articles.[2]
In 1991, he constructed the first known arbitrarily distortable Banach space, and subsequently, he and Edward Odell jointly solved the Distortion Problem in Hilbert space.[7][8] Their work on the Distortion Problem was published in Acta Mathematica, in 1994 and presented at the International Congress of Mathematicians in Zürich in the same year.[8]
Schlumprecht, along with Richard Gardner and Alexander Koldobsky, presented a uniform solution to the Busemann-Petty Problem for all dimensions, which was published in the Annals of Mathematics.[9][10]
In collaboration with Andras Zsak and Daniel Freeman, he solved a problem posed by Albrecht Pietsch and proved that the algebra of operators on several classical Banach spaces has continuum many closed sub-ideals.[11][12]
Selected publications
[Bearbeiten | Quelltext bearbeiten]Articles
[Bearbeiten | Quelltext bearbeiten]- Schlumprecht, T. (1991). "An arbitrarily distortable Banach space". Israel J. Math. 76 (1-2). pp. 81–95.[7]
- Odell, E.; Schlumprecht, T. (1994). "The distortion problem". Acta Math. 173 (2). pp. 259–281.[8]
- Knaust, H.; Odell, E.; Schlumprecht, T. (1999). "On asymptotic structure, the Szlenk index and UKK properties in Banach spaces". Positivity 3 (2). pp. 173–200.
- Gardner, R. J.; Koldobsky, A.; Schlumprecht, T. (1999). "An analytic solution to the Busemann-Petty problem on sections of convex bodies". Annals of Mathematics. pp. 691–703.[9]
- Odell, E.; Schlumprecht, T. (2002). "Trees and branches in Banach spaces". Transactions of the American Mathematical Society 354 (10). pp. 4085–4108.
- Odell, E.; Schlumprecht, T. (2006). "A separable reflexive space universal for the uniformly convex Banach spaces". Math. Annalen 335. pp. 901–916.
- Freeman, D.; Odell, E.; Schlumprecht, T. (2011). "The universality of ℓ 1 as a dual space". Mathematische Annalen 351 (1). pp. 149–186.
- Haydon, R.; Odell, E.; Schlumprecht, T. (2011). "Small subspaces of L p". Annals of mathematics. pp. 169–209.
- Baudier, F.; Lancien, G.; Schlumprecht, T. (2018). "The coarse geometry of Tsirelson's space and applications". Journal of the American Mathematical Society 31 (3). pp. 699–717.
- Schlumprecht, T.; Zsák, A. (2018). "The algebra of bounded linear operators\\break on ℓp⊕ ℓp has infinitely many closed ideals". Journal für die reine und angewandte Mathematik (Crelles Journal) 2018 (735).[12]
- Freeman, D.; Schlumprecht, T.; Zsák, A. (2017). "Closed ideals of operators between the classical sequence spaces". Bulletin of the London Mathematical Society 49 (5). pp. 859–876.[11]
- Lechner, R.; Motakis, P.; Müller, P. F. X.; Schlumprecht, T. (2022). "The space L1(Lp) is primary for 1 < p < ∞". Forum of Mathematics, Sigma 10. pp. e32.
References
[Bearbeiten | Quelltext bearbeiten]External links
[Bearbeiten | Quelltext bearbeiten]- Google Scholar
- Thomas Schlumprecht on Arxiv
- Thomas Schlumprecht, Professor
- Texas A&M University Mathematics
- Vorlage:MathGenealogy
{{draft categories|
[[Category:1954 births]]
[[Category:Living people]]
[[Category:20th-century German mathematicians]]
[[Category:21st-century German mathematicians]]
[[Category:Functional analysts]]
[[Category:Mathematical analysts]]
[[Category:Texas A&M University alumni]]
[[Category:Texas A&M University faculty]]
[[Category:Fellows of the American Mathematical Society]]
[[Category:Mathematicians]]
[[Category:American mathematicians]]
[[Category:German mathematicians]]
[[Category:Functional analysis]]
[[Category:Convex geometry]]
[[Category:Probability theory]]
[[Category:Ludwig Maximilian University of Munich alumni]]
[[Category:University of Texas at Austin faculty]]
[[Category:Louisiana State University faculty]]
[[Category:Banach spaces]]}}
- ↑ a b Fellows of the American Mathematical Society. In: American Mathematical Society. Abgerufen am 21. Juni 2023 (englisch).
- ↑ a b c Thomas Schlumprecht. In: scholar.google.com. Abgerufen am 21. Juni 2023.
- ↑ a b c d Thomas Schlumprecht. In: people.tamu.edu. Abgerufen am 21. Juni 2023.
- ↑ Staff. In: CTU - Faculty of Electrical Engineering. Abgerufen am 21. Juni 2023 (englisch).
- ↑ Search. In: projecteuclid.org. Abgerufen am 21. Juni 2023.
- ↑ Denka Kutzarova, Pei-Kee Lin: Remarks about Schlumprecht space. In: Proceedings of the American Mathematical Society. 128. Jahrgang, Nr. 7, 2000, ISSN 0002-9939, S. 2059–2068, doi:10.1090/S0002-9939-99-05248-X (englisch, ams.org).
- ↑ a b Thomas Schlumprecht: An arbitrarily distortable Banach space. In: Israel Journal of Mathematics. 76. Jahrgang, Nr. 1, 1. Oktober 1991, ISSN 1565-8511, S. 81–95, doi:10.1007/BF02782845 (englisch, doi.org).
- ↑ a b c Edward Odell, Thomas Schlumprecht: The distortion problem. In: Acta Mathematica. 173. Jahrgang, Nr. 2, ISSN 0001-5962, S. 259–281, doi:10.1007/BF02398436 (projecteuclid.org).
- ↑ a b Shibboleth Authentication Request. In: login.srv-proxy1.library.tamu.edu. Abgerufen am 21. Juni 2023 (10.2307/120978).
- ↑ An analytic solution to the Busemann-Petty problem on sections of convex bodies.
- ↑ a b D. Freeman, Th. Schlumprecht, A. Zsák: Addendum: Closed ideals of operators between the classical sequence spaces: ( Bull. Lond. Math. Soc . 49 (2017) 859–876). In: Bulletin of the London Mathematical Society. 53. Jahrgang, Nr. 2, ISSN 0024-6093, S. 593–595, doi:10.1112/blms.12444 (englisch, wiley.com).
- ↑ a b Thomas Schlumprecht, András Zsák: The algebra of bounded linear operators\break on ℓp ⊕ ℓp has infinitely many closed ideals. In: Journal für die reine und angewandte Mathematik (Crelles Journal). 2018. Jahrgang, Nr. 735, 1. Februar 2018, ISSN 1435-5345, S. 225–247, doi:10.1515/crelle-2015-0021 (englisch, degruyter.com).