Benutzer:Pellogrino/Thomas Schlumprecht

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Dieser Artikel (Thomas Schlumprecht) ist im Entstehen begriffen und noch nicht Bestandteil der freien Enzyklopädie Wikipedia.
Wenn du dies liest:
  • Der Text kann teilweise in einer Fremdsprache verfasst, unvollständig sein oder noch ungeprüfte Aussagen enthalten.
  • Wenn du Fragen zum Thema hast, nimm am besten Kontakt mit dem Autor Pellogrino auf.
Wenn du diesen Artikel überarbeitest:
  • Bitte denke daran, die Angaben im Artikel durch geeignete Quellen zu belegen und zu prüfen, ob er auch anderweitig den Richtlinien der Wikipedia entspricht (siehe Wikipedia:Artikel).
  • Nach erfolgter Übersetzung kannst du diese Vorlage entfernen und den Artikel in den Artikelnamensraum verschieben. Die entstehende Weiterleitung kannst du schnelllöschen lassen.
  • Importe inaktiver Accounts, die länger als drei Monate völlig unbearbeitet sind, werden gelöscht.
Vorlage:Importartikel/Wartung-2023-06

Vorlage:Infobox scientist Thomas Berthold Schlumprecht (born October 19, 1954, in Munich, Germany) is an American-German mathematician. He is known for his contributions to several fields of Analysis, including Functional Analysis, Convex Geometry, and Probability Theory.[1][2]

Thomas Schlumprecht is a mathematician who received his Ph.D. degree from Ludwig Maximilian University of Munich in 1988,[3] under the supervision of Jürgen Batt. From 1988 to 1991, he served as a postdoctoral fellow at the University of Texas at Austin. Following this, he held the position of assistant professor at Louisiana State University in Baton Rouge from 1991 to 1992.[3] Since 1992, Schlumprecht has been a faculty member in the Department of Mathematics at Texas A&M University in College Station, where he currently holds the rank of Professor.[3] Moreover, since 2013, he has also served as an adjunct professor at the faculty of Electrical Engineering, Czech Technical University,[4][3] located in Prague, Czech Republic.

He served as an International editor of the Glasgow Mathematical Journal from 1999 to 2018.[2][5] He held the position of associate editor for the Proceedings of the American Mathematical Society[6] from 2010 to 2017 and has been an associate editor of the Journal of Functional Analysis since 2017.

He was appointed a Fellow of the American Mathematical Society in 2016.[1]

Thomas Schlumprecht has made contributions to mathematical research, authoring 77 research articles.[2]

In 1991, he constructed the first known arbitrarily distortable Banach space, and subsequently, he and Edward Odell jointly solved the Distortion Problem in Hilbert space.[7][8] Their work on the Distortion Problem was published in Acta Mathematica, in 1994 and presented at the International Congress of Mathematicians in Zürich in the same year.[8]

Schlumprecht, along with Richard Gardner and Alexander Koldobsky, presented a uniform solution to the Busemann-Petty Problem for all dimensions, which was published in the Annals of Mathematics.[9][10]

In collaboration with Andras Zsak and Daniel Freeman, he solved a problem posed by Albrecht Pietsch and proved that the algebra of operators on several classical Banach spaces has continuum many closed sub-ideals.[11][12]

Selected publications

[Bearbeiten | Quelltext bearbeiten]
  • Schlumprecht, T. (1991). "An arbitrarily distortable Banach space". Israel J. Math. 76 (1-2). pp. 81–95.[7]
  • Odell, E.; Schlumprecht, T. (1994). "The distortion problem". Acta Math. 173 (2). pp. 259–281.[8]
  • Knaust, H.; Odell, E.; Schlumprecht, T. (1999). "On asymptotic structure, the Szlenk index and UKK properties in Banach spaces". Positivity 3 (2). pp. 173–200.
  • Gardner, R. J.; Koldobsky, A.; Schlumprecht, T. (1999). "An analytic solution to the Busemann-Petty problem on sections of convex bodies". Annals of Mathematics. pp. 691–703.[9]
  • Odell, E.; Schlumprecht, T. (2002). "Trees and branches in Banach spaces". Transactions of the American Mathematical Society 354 (10). pp. 4085–4108.
  • Odell, E.; Schlumprecht, T. (2006). "A separable reflexive space universal for the uniformly convex Banach spaces". Math. Annalen 335. pp. 901–916.
  • Freeman, D.; Odell, E.; Schlumprecht, T. (2011). "The universality of ℓ 1 as a dual space". Mathematische Annalen 351 (1). pp. 149–186.
  • Haydon, R.; Odell, E.; Schlumprecht, T. (2011). "Small subspaces of L p". Annals of mathematics. pp. 169–209.
  • Baudier, F.; Lancien, G.; Schlumprecht, T. (2018). "The coarse geometry of Tsirelson's space and applications". Journal of the American Mathematical Society 31 (3). pp. 699–717.
  • Schlumprecht, T.; Zsák, A. (2018). "The algebra of bounded linear operators\\break on ℓp⊕ ℓp has infinitely many closed ideals". Journal für die reine und angewandte Mathematik (Crelles Journal) 2018 (735).[12]
  • Freeman, D.; Schlumprecht, T.; Zsák, A. (2017). "Closed ideals of operators between the classical sequence spaces". Bulletin of the London Mathematical Society 49 (5). pp. 859–876.[11]
  • Lechner, R.; Motakis, P.; Müller, P. F. X.; Schlumprecht, T. (2022). "The space L1(Lp) is primary for 1 < p < ∞". Forum of Mathematics, Sigma 10. pp. e32.

Vorlage:Reflist


{{draft categories| [[Category:1954 births]] [[Category:Living people]] [[Category:20th-century German mathematicians]] [[Category:21st-century German mathematicians]] [[Category:Functional analysts]] [[Category:Mathematical analysts]] [[Category:Texas A&M University alumni]] [[Category:Texas A&M University faculty]] [[Category:Fellows of the American Mathematical Society]] [[Category:Mathematicians]] [[Category:American mathematicians]] [[Category:German mathematicians]] [[Category:Functional analysis]] [[Category:Convex geometry]] [[Category:Probability theory]] [[Category:Ludwig Maximilian University of Munich alumni]] [[Category:University of Texas at Austin faculty]] [[Category:Louisiana State University faculty]] [[Category:Banach spaces]]}}

  1. a b Fellows of the American Mathematical Society. In: American Mathematical Society. Abgerufen am 21. Juni 2023 (englisch).
  2. a b c Thomas Schlumprecht. In: scholar.google.com. Abgerufen am 21. Juni 2023.
  3. a b c d Thomas Schlumprecht. In: people.tamu.edu. Abgerufen am 21. Juni 2023.
  4. Staff. In: CTU - Faculty of Electrical Engineering. Abgerufen am 21. Juni 2023 (englisch).
  5. Search. In: projecteuclid.org. Abgerufen am 21. Juni 2023.
  6. Denka Kutzarova, Pei-Kee Lin: Remarks about Schlumprecht space. In: Proceedings of the American Mathematical Society. 128. Jahrgang, Nr. 7, 2000, ISSN 0002-9939, S. 2059–2068, doi:10.1090/S0002-9939-99-05248-X (englisch, ams.org).
  7. a b Thomas Schlumprecht: An arbitrarily distortable Banach space. In: Israel Journal of Mathematics. 76. Jahrgang, Nr. 1, 1. Oktober 1991, ISSN 1565-8511, S. 81–95, doi:10.1007/BF02782845 (englisch, doi.org).
  8. a b c Edward Odell, Thomas Schlumprecht: The distortion problem. In: Acta Mathematica. 173. Jahrgang, Nr. 2, ISSN 0001-5962, S. 259–281, doi:10.1007/BF02398436 (projecteuclid.org).
  9. a b Shibboleth Authentication Request. In: login.srv-proxy1.library.tamu.edu. Abgerufen am 21. Juni 2023 (10.2307/120978).
  10. An analytic solution to the Busemann-Petty problem on sections of convex bodies.
  11. a b D. Freeman, Th. Schlumprecht, A. Zsák: Addendum: Closed ideals of operators between the classical sequence spaces: ( Bull. Lond. Math. Soc . 49 (2017) 859–876). In: Bulletin of the London Mathematical Society. 53. Jahrgang, Nr. 2, ISSN 0024-6093, S. 593–595, doi:10.1112/blms.12444 (englisch, wiley.com).
  12. a b Thomas Schlumprecht, András Zsák: The algebra of bounded linear operators\break on p ⊕ p has infinitely many closed ideals. In: Journal für die reine und angewandte Mathematik (Crelles Journal). 2018. Jahrgang, Nr. 735, 1. Februar 2018, ISSN 1435-5345, S. 225–247, doi:10.1515/crelle-2015-0021 (englisch, degruyter.com).