Bruchpunkt

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Der Bruchpunkt (engl. breakdown point)[1] ist eine Kennzahl für die Robustheit eines Schätzers. Der Bruchpunkt gibt dabei den Anteil der Daten an, der benötigt wird, um das Ergebnis des Schätzers beliebig zu verfälschen. Man sagt dann, dass der Schätzer zusammenbricht.

Endlicher Bruchpunkt

[Bearbeiten | Quelltext bearbeiten]

Der endliche Bruchpunkt (engl. finite sample break down point)[2] ist der kleinste Anteil von Beobachtungen, der den Schätzer zusammenbrechen lässt. Er wird mit bezeichnet.

Das arithmetische Mittel z. B. hat einen endlichen Bruchpunkt von , da bereits ein genügend großer Ausreißer reicht, um seinen Wert beliebig in die Höhe zu treiben. Beim -getrimmten Mittel müssen bereits mehr als Stichproben Ausreißer sein, um einen Einfluss auf die Schätzung zu haben. Der Bruchpunkt liegt also bei

Asymptotischer Bruchpunkt

[Bearbeiten | Quelltext bearbeiten]

Der asymptotische Bruchpunkt, meist einfach nur als der Bruchpunkt bezeichnet, gibt den relativen Anteil der zur Verfälschung der Schätzung benötigten Daten an. Er wird meist mit bezeichnet. Ihn erhält man, indem man die Anzahl der Beobachtungen beim endlichen Bruchpunkt gegen unendlich streben lässt, also

Somit ergibt sich für das arithmetische Mittel ein Bruchpunkt von und für das -getrimmte Mittel ein Bruchpunkt von

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Lutz Dümbgen: Einführung in die Statistik. Birkhäuser, Basel 2015, ISBN 978-3-0348-0004-4, S. 94 (eingeschränkte Vorschau in der Google-Buchsuche).
  2. Samuel Kotz, N. Balakrishnan, Campbell B. Read, Brani Vidakovic (Hrsg.): Encyclopedia of Statistical Sciences. 2. Auflage. Wiley-Interscience, Hoboken, N.J. 2006, ISBN 978-0-471-74391-0, S. 664 (englisch, eingeschränkte Vorschau in der Google-Buchsuche).