Diskussion:Halbwertszeit
Füge neue Diskussionsthemen unten an:
Klicke auf , um ein neues Diskussionsthema zu beginnen.Zum Archiv |
Wie wird ein Archiv angelegt? |
Auf dieser Seite werden Abschnitte ab Überschriftenebene 2 automatisch archiviert, die seit 30 Tagen mit dem Baustein {{Erledigt|1=--~~~~}} versehen sind. |
Durchschnittliche Lebensdauer
[Quelltext bearbeiten]Zitat: Bei exponentieller Abnahme ist sie die Zeitspanne
Wie leitet sich das mathematisch her?
Nehmen wir . Die Halbwertszeit davon ist , und nach der obigen Formel wäre die durchschnittliche Lebensdauer also .
Ich komme aber zu einem anderen Ergebnis:
Die Ableitung von ist , also beschreibt auch die Menge der „Individuen”, deren „Lebenszeit” endet. Bei endlichen Mengen wäre die durchschnittliche Lebensdauer die Summe aller individuellen Lebensdauern, geteilt durch die Zahl der Individuen, für diese Formel ergibt sich damit
,
und deren Stammfunktion F(t) mit ist . Die durchschnittliche Lebnesdauer ist der Wert, bei dem F(t) den Wert 0,5 annimmt.
Aus ergibt sich und also nicht
Hab ich einen Denkfehler begangen, oder stimmt die Angabe im Artikel nicht?
--Helmut w.k. (Diskussion) 00:32, 15. Dez. 2022 (CET)
- Weshalb sollte die durchschnittliche Lebensdauer durch Die durchschnittliche Lebnesdauer ist der Wert, bei dem F(t) den Wert 0,5 annimmt. gegeben sein? Ich denke, da liegt der Fehler. --Bleckneuhaus (Diskussion) 14:06, 15. Dez. 2022 (CET)
- Weil die angegebene F(t) die Stammfunktion für die Gewichtung der Werte darstellt: zu einem gegebenen (t) beenden e^-t Werte ihre Lebenszeit, das trägt x·e^-t zur Summe aller Lebensdauern bei. F(t) ist davon die Stammfunktion, die von F(0)=0 bis F(inf) = 1 geht. Bei F(t)= ½ ist also die Hälfte der aufsummierten (bzw. integrierten) Gesamt-Lebensdauer aller Werte vom 0 bis 1 erreicht, und geteilt durch (1-0)=1 ergibt das die durchschnittliche Lebensdauer.
- ----Helmut w.k. (Diskussion) 16:46, 15. Dez. 2022 (CET)
- "... also beschreibt e^(-t) auch die Menge [genauer: Rate] der „Individuen”, deren „Lebenszeit” endet" ist richtig, aber F(t) ist gar nicht die Stammfunktion von e^(-t), sondern wenn vorher noch mit t multipliziert wird. Damit werden hohe t-Werte (falsch) stärker gewichtet, deshalb ist Dein \tau größer. - Zur Fortsetzung empfehle ich auch einen Blick in die einschlägigen Lehrbücher, denn das gehört gar nicht hierher. --Bleckneuhaus (Diskussion) 15:37, 27. Jan. 2023 (CET)
Periodensystem
[Quelltext bearbeiten]Bei der Abbildung fehlt die Erläuterung der Farben, die sind zwar als 6 Balken im Diagramm vorhanden, leider ohne Text. Im unter dem Bild befindlichen Erklärungstext fehlen wiederum die Farben! --Astra66 (Diskussion) 19:50, 6. Mär. 2023 (CET)