Diskussion:Lügner-Paradox/Archiv/2009

aus Wikipedia, der freien Enzyklopädie
Letzter Kommentar: vor 13 Jahren von Leif Czerny in Abschnitt Angeblich naheliegender Gedanke
Zur Navigation springen Zur Suche springen

Tarskis Lösung

Hallo, ich habe die Tarskis Lösung nicht verstanden. Kann da jemand etwas besser erklären?

Tarskis Lösung stammt gar nicht von Tarski. Er hat sie vielmehr aus den Principia Mathematica (Seite 65) von Russell übernommen. Dort werden bereits die Aussagen und Wahrheitswerte hierarchisch geordnet (n-th order). Es ist also Russells Lösung aus seiner Typentheorie. Ich korrigiere daher den Artikel entsprechend.--Wilfried Neumaier 14:53, 17. Sep. 2009 (CEST)
Archivierung dieses Abschnittes wurde gewünscht von: Leif Czerny 18:22, 2. Jul. 2011 (CEST)

Angeblich naheliegender Gedanke

Die erste Möglichkeit, die einem in den Sinn kommen könnte, wäre, es zu bestreiten, dass Sätze immer entweder wahr oder falsch seien, und es stattdessen zuzulassen, dass Sätze einen dritten Wert, etwa "unbestimmt", haben können. Äh, also daß das die erste Möglichkeit ist, die einem (sinnvollerweise!) in den Sinn kommen könnte, bestreite ich mal. Wer käme ernsthaft auf den Gedanken, für ein kleines Paradoxönchen das Tertium non datur umzuschmeißen? --84.154.47.160 23:00, 10. Sep. 2009 (CEST)

Ja, das ist schlecht formuliert, ich ändere es ab.--Wilfried Neumaier 13:53, 15. Sep. 2009 (CEST)

Archivierung dieses Abschnittes wurde gewünscht von: Leif Czerny 18:22, 2. Jul. 2011 (CEST)