Fuhrmann-Kreis

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Fuhrmann-Kreis mit Fuhrmann-Dreieck (rot),
Nagel-Punkt und Höhenschnittpunkt

Der Fuhrmann-Kreis, benannt nach Wilhelm Fuhrmann (1833–1904), ist ein spezieller Kreis am Dreieck. Für ein gegebenes Dreieck mit Nagel-Punkt und Höhenschnittpunkt kann man den Fuhrmann-Kreis als denjenigen Kreis definieren, der die Strecke als Durchmesser besitzt. Der so definierte Kreis ist identisch mit dem Umkreis des zum gegebenen Dreieck gehörenden Fuhrmann-Dreiecks.

Der Radius des Fuhrmann-Kreises entspricht dem Abstand der Mittelpunkte von Inkreis und Umkreis des gegebenen Dreiecks. Mit dem Satz von Euler ergibt sich hiermit:

Hierbei bezeichnet den Radius des Umkreises und den Radius des Inkreises.

Der Fuhrmann-Kreis schneidet die Höhen des Dreiecks neben dem gemeinsamen Höhenschnittpunkt jeweils in einem weiteren Punkt. Jeder dieser Punkte besitzt den Abstand vom zugehörigen Eckpunkt (siehe Zeichnung). Da der Fuhrmann-Kreis mit diesen drei Punkten zusammen mit dem Nagel-Punkt, dem Höhenschnittpunkt und den Eckpunkten des Fuhrmann-Dreiecks insgesamt acht besondere Punkte besitzt, wird er manchmal auch als Acht-Punkte-Kreis bezeichnet.

  • Roger A. Johnson: Advanced Euclidean Geometry. Dover 2007, ISBN 978-0-486-46237-0, S. 228–229, 300 (Erstveröffentlichung 1929 bei der Houghton Mifflin Company (Boston) unter dem Titel Modern Geometry).
  • Ross Honsberger: Episodes in Nineteenth and Twentieth Century Euclidean Geometry. MAA, 1995, S. 49-52
  • J. A. Scott: An Eight-Point Circle. In: The Mathematical Gazette, Band 86, Nr. 506 (Jul., 2002), S. 326–328 (JSTOR)
Commons: Fuhrmann circle – Sammlung von Bildern, Videos und Audiodateien