Gerade und ungerade Funktionen

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen
Die Normalparabel ist ein Beispiel für eine gerade Funktion.
Die kubische Funktion ist ein Beispiel für eine ungerade Funktion.

Gerade und ungerade Funktionen sind in der Mathematik zwei Klassen von Funktionen, die bestimmte Symmetrieeigenschaften aufweisen:

In der Schulmathematik gehört die Untersuchung eines Funktionsschaubildes auf diese Symmetrien hin zu den ersten Schritten einer Kurvendiskussion.

Eine reelle Funktion mit einer bezüglich der Null symmetrischen Definitionsmenge heißt gerade, wenn für alle Argumente

gilt, und sie heißt ungerade, wenn für alle

gilt.[1] Anschaulich ist eine reelle Funktion genau dann gerade, wenn ihr Funktionsgraph achsensymmetrisch zur y-Achse ist, und ungerade, wenn ihr Funktionsgraph punktsymmetrisch zum Koordinatenursprung ist.

Gerade Funktionen

[Bearbeiten | Quelltext bearbeiten]

Ungerade Funktionen

[Bearbeiten | Quelltext bearbeiten]

Die einzige Funktion, die gleichzeitig gerade und ungerade ist, ist die Nullfunktion .

Allgemeinere Beispiele

[Bearbeiten | Quelltext bearbeiten]
  • Eine Potenzfunktion

    ist für genau dann gerade, wenn der Exponent gerade ist, und genau dann ungerade, wenn der Exponent ungerade ist.
  • Eine Polynomfunktion

    ist genau dann gerade, wenn alle ungeradzahligen Koeffizienten gleich null sind, und genau dann ungerade, wenn alle geradzahligen Koeffizienten gleich null sind.
  • Ein trigonometrisches Polynom

    ist genau dann gerade, wenn alle Koeffizienten sind, und genau dann ungerade, wenn alle Koeffizienten sind.

Es gibt auch Funktionen, die weder gerade noch ungerade sind, zum Beispiel die Funktion . Jede Funktion mit einer bezüglich der Null symmetrischen Definitionsmenge lässt sich jedoch als Summe einer geraden und einer ungeraden Funktion schreiben. Das heißt

,

wobei

den geraden Anteil der Funktion und

den ungeraden Anteil der Funktion darstellt. Diese Zerlegung einer Funktion in gerade und ungerade Komponenten ist eindeutig, d. h., es gibt keine andere Möglichkeit, eine Funktion in gerade und ungerade Komponenten zu zerlegen. Dies folgt aus den Tatsachen, dass sowohl die Menge aller geraden Funktionen als auch die Menge aller ungeraden Funktionen jeweils einen Untervektorraum des Raums aller Funktionen bilden, und dass die einzige Funktion, die sowohl gerade als auch ungerade ist, die Nullfunktion ist. Beim Beispiel ist damit

und

.

Algebraische Eigenschaften

[Bearbeiten | Quelltext bearbeiten]
  • Jedes Vielfache einer geraden bzw. ungeraden Funktion ist wieder gerade bzw. ungerade.
  • Die Summe zweier gerader Funktionen ist wieder gerade.
  • Die Summe zweier ungerader Funktionen ist wieder ungerade.
  • Das Produkt zweier gerader Funktionen ist wieder gerade.
  • Das Produkt zweier ungerader Funktionen ist gerade.
  • Das Produkt einer geraden und einer ungeraden Funktion ist ungerade.
  • Der Quotient zweier gerader Funktionen ist wieder gerade.
  • Der Quotient zweier ungerader Funktionen ist gerade.
  • Der Quotient einer geraden und einer ungeraden Funktion ist ungerade.
  • Die Komposition einer beliebigen Funktion mit einer geraden Funktion ist gerade.
  • Die Komposition einer ungeraden Funktion mit einer ungeraden Funktion ist ungerade.

Analytische Eigenschaften

[Bearbeiten | Quelltext bearbeiten]
  • Im Nullpunkt hat (sofern dieser im Definitionsbereich enthalten ist) jede ungerade Funktion den Funktionswert Null.
  • Die Ableitung einer geraden differenzierbaren Funktion ist ungerade, die Ableitung einer ungeraden differenzierbaren Funktion gerade.
  • Das bestimmte Integral einer ungeraden stetigen Funktion ergibt , wenn die Integrationsgrenzen symmetrisch um den Nullpunkt liegen.
  • Die Taylor-Reihe mit dem Entwicklungspunkt einer geraden (ungeraden) Funktion enthält nur gerade (ungerade) Potenzen.
  • Die Fourier-Reihe einer geraden (ungeraden) Funktion enthält nur Kosinus- (Sinus-)Terme.

Verallgemeinerungen

[Bearbeiten | Quelltext bearbeiten]

Allgemeiner definiert man in der Algebra durch obige Definition auch gerade und ungerade Funktionen zwischen zwei Mengen und , auf denen eine Verknüpfung mit additiv Inversem gegeben ist, beispielsweise (additive) Gruppen, Ringe, Körper oder Vektorräume. Auf diese Weise lassen sich beispielsweise auch gerade und ungerade komplexe Funktionen oder gerade und ungerade vektorwertige Funktionen definieren.

In der mathematischen Physik wird das Konzept der geraden und ungeraden Funktionen durch den Begriff der Parität verallgemeinert. Diese ist vor allem für Wellenfunktionen etwa in der Quantenmechanik von Bedeutung.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Harro Heuser: Lehrbuch der Analysis Teil 1. 17. Auflage. Vieweg+Teubner, Wiesbaden 2009, ISBN 978-3-8348-0777-9, S. 117.