Satz von Eliashberg-Thurston
Zur Navigation springen
Zur Suche springen
In der Mathematik ist der Satz von Eliashberg-Thurston ein Lehrsatz der Kontaktgeometrie über die Deformierbarkeit von Blätterungen in Kontaktstrukturen. Er wurde von Eliashberg und Thurston bewiesen.
Satz von Eliashberg-Thurston: Eine 2-mal differenzierbare straffe Blätterung einer 3-Mannigfaltigkeit kann stetig in eine straffe Kontaktstruktur deformiert werden.
Zusammen mit dem Satz von Gabai erhält man daraus den Satz von Gabai-Eliashberg-Thurston: Sei eine geschlossene, orientierte, zusammenhängende, irreduzible 3-Mannigfaltigkeit mit , dann trägt eine straffe Kontaktstruktur.
Literatur
[Bearbeiten | Quelltext bearbeiten]- Y. Eliashberg, W. Thurston: Confoliations. University Lecture Series. 13. Providence, RI: American Mathematical Society, 1998