Schrödinger-Operator

aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen Zur Suche springen

Der Schrödinger-Operator ist ein Operator aus der Quantenmechanik.[1] Er gibt eine vereinfachte Beschreibung einer nicht-relativistischen Bewegung eines quantenmechanischen Teilchens in einem äußeren Potential. Im relativistischen Fall ist es der Dirac-Operator.

Die negativen Eigenwerte des Schrödinger-Operators entsprechen den sogenannten gebundenen Zuständen, etwa Energien der Elektronen, die an einen Atomkern gebunden sind.

Die Spektraltheorie des Schrödinger-Operators ist seit 1950 aufgrund ihrer mathematischen Fülle und ihrer physikalischen Bedeutung intensiv entwickelt worden.[2]

Definition und Einführung

[Bearbeiten | Quelltext bearbeiten]

Der Schrödinger-Operator für ein Quantensystem ist der lineare, partielle Differentialoperator

auf dem Raum der quadratintegrierbaren Funktionen . Die Konstante ist die reduzierte Masse des Systems und ist das reduzierte Plancksche Wirkungsquantum. Die reellwertige Funktion wird oft Potential genannt, der Laplace-Operator wird als Operator der kinetischen Energie bezeichnet. Diese Familie linearer Operatoren beschreibt für verschiedene Potentiale verschiedene Quantensysteme.

Elemente des Hilbertraum , die auch Wellenfunktionen genannt werden, stellen verschiedene Zustände des Systems dar. Die Zeitentwicklung einer Wellenfunktion für ein Quantensystem mit Schrödinger-Operator wird beschrieben durch die Schrödingergleichung

.

Für jeden vernünftigen Anfangswert des Systems hat die Lösung der Schrödingergleichung die Gestalt

,

wobei die Abbildung der Entwicklungsoperator für die Schrödingergleichung ist.

Eine Forderung aus der Quantenmechanik ist, dass

gilt. Eine weitere Forderung für die Eindeutigkeit von Lösungen der Schrödingergleichung ist, dass für alle

gilt.

Als Potential betrachten wir das Coulombpotential:

wobei die Konstante für die Kernladungszahl steht.

Durch dieses Potential können wasserstoffähnliche Atome bzw. Ionen modelliert werden, bei denen z. B. ein einzelnes Elektron an einen Atomkern gebunden ist.

Der Schrödinger-Operator hat damit die Gestalt

Dieser Abschnitt fasst einige Resultate des Schrödinger-Operators zusammen. Wichtige Aspekte des Schrödingeroperators sind dabei die Selbstadjungiertheit, das negative, das diskrete sowie das wesentliche Spektrum.

Wesentliche Selbstadjungiertheit

[Bearbeiten | Quelltext bearbeiten]

Die Selbstadjungiertheit des Schrödinger-Operators ist eine notwendige und hinreichende Bedingung für die Existenz und Eindeutigkeit von Lösungen für das Cauchyproblem der Schrödingergleichung, die zudem die Forderungen (1) und (2) erfüllen. Die Frage, ob der Schrödinger-Operator zu einem gegebenen Potential V selbstadjungiert ist, ist nicht leicht zu beantworten.

  • Falls und halbbeschränkt nach unten auf sind (das heißt, es gibt ein mit für alle ), so ist wesentlich selbstadjungiert auf .
  • Falls ist, wobei der Raum lokal integrierbaren Funktionen ist, so ist wesentlich selbstadjungiert auf .
  • Falls und reellwertig ist, so ist selbstadjungiert mit .
  • Falls messbar ist mit und mit für , für , so ist selbstadjungiert auf .

Diskretes Spektrum

[Bearbeiten | Quelltext bearbeiten]
  • Falls und , so ist zu jedem das Spektrum von in diskret.

Negatives Spektrum

[Bearbeiten | Quelltext bearbeiten]

Aus obigem Resultat wissen wir, dass das negative Spektrum diskret ist: dennoch stellt sich die Frage, ob es überhaupt negative Eigenwerte gibt.

  • Für mit , und hat der Schrödingeroperator mindestens einen negativen Eigenwert.
  • Sei . Dann gibt es eine Konstante , so dass für alle die Abschätzung gilt
,
wobei die Anzahl der negative Eigenwerte von ist.

Wesentliches Spektrum

[Bearbeiten | Quelltext bearbeiten]
  • Sei das wesentliche Spektrum von . Falls selbstadjungiert ist, dann gilt:
ist äquivalent dazu, dass es eine Weyl-Folge zu und zu gibt.
  • Falls und , dann ist .
  • David Borthwick: Spectral Theory: Basic Concepts and Applications (= Graduate Texts in Mathematics. Band 284). Springer, Cham, Switzerland 2020, ISBN 978-3-03038001-4, doi:10.1007/978-3-030-38002-1 (englisch).
  • P. D. Hislop, I. M. Sigal: Introduction to Spectral Theory: With Applications to Schrödinger Operators (= J. E. Marsden, L. Sirovich, F. John [Hrsg.]: Applied Mathematical Sciences. Band 113). Springer New York, New York, NY 1996, ISBN 978-1-4612-6888-8, doi:10.1007/978-1-4612-0741-2 (englisch).
  • Hans L. Cycon (Hrsg.): Schrödinger operators: with applications to quantum mechanics and global geometry (= Texts and monographs in physics). Corr. and extended 2. print Auflage. Springer, Berlin Heidelberg 2008, ISBN 978-3-540-16758-7 (englisch).
  • Barry Simon: Schrödinger operators in the twentieth century. In: Journal of Mathematical Physics. Band 41, Nr. 6, Juni 2000, S. 3523–3555, doi:10.1063/1.533321 (englisch).

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. V. Bach: Schrödinger Operators. In: Encyclopedia of Mathematical Physics. Elsevier, 2006, ISBN 978-0-12-512666-3, S. 487–494, doi:10.1016/b0-12-512666-2/00214-5 (englisch, elsevier.com [abgerufen am 28. Juli 2022]).
  2. David Borthwick: Schrödinger Operators. In: Spectral Theory. Band 284. Springer International Publishing, Cham 2020, ISBN 978-3-03038001-4, S. 183–223, doi:10.1007/978-3-030-38002-1_7 (englisch, springer.com [abgerufen am 28. Juli 2022]).