Strömungswiderstandskoeffizient

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von Windschlüpfigkeit)
Zur Navigation springen Zur Suche springen
Physikalische Kennzahl
Name Strömungswiderstandskoeffizient,
Widerstandsbeiwert
Formelzeichen
Dimension dimensionslos
Definition
Widerstandskraft
Staudruck der Anströmung
Referenzflächeninhalt
Anwendungsbereich Luftwiderstand von Körpern

Der Strömungswiderstandskoeffizient, Widerstandsbeiwert, Widerstandskoeffizient, Stirnwiderstand oder cw-Wert (nach dem üblichen Formelzeichen ) ist ein dimensionsloses Maß (Koeffizient) für den Strömungswiderstand eines von einem Fluid umströmten Körpers.

Umgangssprachlich ausgedrückt ist der -Wert ein Maß für die „Windschlüpfigkeit“ eines Körpers. Aus dem Strömungswiderstandskoeffizienten lässt sich bei bekannter Geschwindigkeit, Stirn- oder bei Flügeln Flügelfläche und Dichte des Fluids (zum Beispiel der durchquerten Luft) die Kraft des Strömungswiderstands berechnen.

Der Strömungswiderstandskoeffizient ist definiert durch:

Hierbei wird die Widerstandskraft auf den Staudruck der Anströmung und eine Referenzfläche normiert mit

  • der Dichte
  • der Geschwindigkeit der ungestörten Anströmung.

Die Referenzfläche ist definitionsabhängig:

  • bei Fahrzeugen ist die Referenzfläche gleich der Stirnfläche[1][2], der Fläche des größten Querschnitts.[3]
  • in der Flugzeugaerodynamik wird jedoch die Auftriebsfläche, also die Flügelfläche, als Referenz herangezogen.

Das Formelzeichen (mit w für Widerstand) ist nur im deutschen Sprachraum üblich; im Englischen wird der Drag Coefficient als oder notiert.

Das Produkt aus Strömungswiderstandskoeffizient und Referenzfläche wird als Widerstandsfläche bezeichnet (siehe Abschnitt Luftwiderstandsbeiwerte von Kraftfahrzeugen).[4]

Abhängigkeiten

[Bearbeiten | Quelltext bearbeiten]

Bei inkompressibler Strömung

[Bearbeiten | Quelltext bearbeiten]
Strömungswiderstandskoeffizient einer Kugel in Abhängigkeit von der Reynolds-Zahl: cw=f(Re). Die charakteristische Länge ist in diesem Fall der Kugeldurchmesser d; die Bezugsfläche A ist eine Kreisfläche mit dem Durchmesser d.

Allgemein gilt, dass bei inkompressibler Strömung[A 1] der Strömungswiderstandskoeffizient von der Reynolds-Zahl abhängt:

mit

    • der charakteristische Länge , deren Quadrat in einem festen Verhältnis zur Bezugsfläche steht
    • der Viskosität (Zähigkeit) des Fluids.

Diese Aussage ergibt sich, wenn man davon ausgeht, dass die Strömungswiderstandskraft eines Körpers in einer bestimmten Lage abhängt von der Anströmgeschwindigkeit, der Dichte, der Viskosität und einer charakteristischen Länge des Körpers:

Mittels einer Dimensionsanalyse nach dem Buckinghamschen Π-Theorem lässt sich ableiten, dass die zwei Ähnlichkeitskennzahlen Strömungswiderstandskoeffizient und Reynoldszahl ausreichen, um den Strömungswiderstand eines bestimmten Körpers zu beschreiben.[5] Dies ermöglicht eine unkompliziertere allgemeingültige Darstellung des Widerstandes einer bestimmten Körperform.

Bei kompressibler Strömung

[Bearbeiten | Quelltext bearbeiten]
cw in Abhängigkeit von der Strömungsgeschwindigkeit

Bei kompressiblen Strömungen, also bei Strömungen mit veränderlicher Dichte (), ist der Strömungswiderstandskoeffizient auch von der Mach-Zahl abhängig (vgl. Abb.):

Oberhalb der kritischen Machzahl überschreiten Teilumströmungen die Schallgeschwindigkeit. Oberhalb der Widerstandsdivergenzmachzahl steigt der Strömungswiderstand stark an. Das Verhalten im Überschallbereich wird bestimmt durch die Geometrie des Körpers; in der Zeichnung steht die grüne Kurve für einen stromlinienförmigen Körper.

Stumpfe, kantige Körper haben über einen großen Bereich der Reynolds-Zahl einen weitgehend konstanten Widerstandsbeiwert. Das ist z. B. beim Luftwiderstand von Kraftfahrzeugen bei den relevanten Geschwindigkeiten der Fall.

Der Widerstandsbeiwert bestimmt für Satelliten ihre Lebensdauer im Orbit. Bei einer Flughöhe oberhalb von ca. 150 km ist die Atmosphäre so dünn, dass die Strömung nicht mehr als laminare Kontinuumsströmung, sondern als freie molekulare Strömung approximiert wird. In diesem Bereich liegt der cw-Wert typischerweise zwischen 2 und 4, oft wird mit einem Wert von 2,2 gerechnet. Mit steigender Höhe verringert sich der Einfluss der Atmosphäre und ist oberhalb von ca. 1000 km vernachlässigbar.

Der Strömungswiderstandskoeffizient wird üblicherweise im Windkanal ermittelt. Der Körper steht dabei auf einer Platte, die mit Kraftsensoren ausgestattet ist. Die Kraft in Richtung der Anströmung wird gemessen. Aus dieser Widerstandskraft und den bekannten Größen wie Luftdichte und Stirnfläche wird der Strömungswiderstandskoeffizient bei gegebener Anströmgeschwindigkeit errechnet.

Daneben kann der Widerstand je nach Komplexität der Modellform und verfügbarer Rechnerkapazität auch numerisch ermittelt werden, indem die Verteilung von Reibungs- und Druckbeiwert über die Modelloberfläche integriert wird.

Bestimmung der Antriebsleistung:

Aus dem Strömungswiderstandskoeffizienten wird die Widerstandskraft wie folgt berechnet:

Der Strömungswiderstand ist somit jeweils proportional

  • zur Dichte des strömenden Fluids (vergleiche Luftdichte)
  • zum Strömungswiderstandskoeffizienten
  • zur Referenzfläche (projizierten Frontfläche)
  • zum Quadrat der Strömungsgeschwindigkeit.

Die erforderliche Antriebsleistung ist sogar proportional zur dritten Potenz der Geschwindigkeit:

Daher hat bei Kraftfahrzeugen neben dem Strömungswiderstandskoeffizient (d. h. der Körperform) und der Stirnfläche die Wahl der Geschwindigkeit besondere Auswirkung auf den Treibstoffverbrauch.

Der Luftwiderstand ist ausschlaggebend für die Abweichung der tatsächlichen ballistischen Kurve von der idealisierten Wurfparabel.

Anwendung des Strömungswiderstandskoeffizienten beim freien Fall eines Objekts:

Der Verlauf von Weg, Geschwindigkeit und Beschleunigung in Abhängigkeit von der Zeit wird folgendermaßen bestimmt:

Formel für den Strömungswiderstand:

Formel für die Gewichtskraft des Objekts:

Formel für die Beschleunigung:

Differentialgleichung:

Lösung der Differentialgleichung:

cw-Werte von typischen Körperformen

[Bearbeiten | Quelltext bearbeiten]
Wert Form
2,3 Halbrohr lang, konkave Seite
2,0 lange Rechteckplatte
1,33 Halbkugelschale, konkave Seite, Fallschirm
1,2 Halbrohr lang, konvexe Seite
1,2 langer Zylinder, Draht (Re < 1,9 · 105)
1,11 runde Scheibe, quadratische Platte
0,78 Mensch, stehend[6]
0,6 Gleitschirm (Bezugsfläche Strömungsquerschnittsfläche !)
0,53…0,69 Fahrrad (Mountainbike, gestreckt/aufrecht)[7]
0,45 Kugel (Re < 1,7 · 105)
0,4 Fahrrad (Rennrad)[7]
0,35 langer Zylinder, Draht (Re > 6,7 · 105)
0,34 Halbkugelschale, Konvexe Seite
0,09…0,18 Kugel (Re > 4,1 · 105)
0,08 Flugzeug (Bezugsfläche Tragfläche)
0,04 Stromlinienkörper „Tropfenform“
0,03 Pinguin
0,02 optimierte Spindelform

bezeichnet hierbei die Reynolds-Zahl

Luftwiderstandsbeiwerte von Kraftfahrzeugen

[Bearbeiten | Quelltext bearbeiten]

Veröffentlichte cw-Werte sind äußerst kritisch zu hinterfragen, da sie oftmals noch heute an kleinen Modellen unter Missachtung der Modellprinzipien ermittelt wurden und werden, früher beispielsweise durch die Deutsche Versuchsanstalt für Luftfahrt mit cw=0,244 für den Tatra 87, der viel später als Original mit cw=0,36 gemessen wurde.[8]

Der cw-Wert quantifiziert die aerodynamische Güte eines Körpers. Durch Multiplikation mit der Bezugsfläche (bei Fahrzeugen üblicherweise die Stirnfläche, die Fläche des größten Querschnitts[9]) erhält man die Widerstandsfläche eines Fahrzeugs, die maßgebend für den „Luftwiderstand“[10] ist:

.

Der Leistungsbedarf, der den Treibstoffverbrauch eines Kraftfahrzeugs bei hohen Fahrgeschwindigkeiten bestimmt, ist proportional zur Widerstandsfläche. Von Herstellern wird die Stirnfläche selten angegeben. Als Faustformel für die Berechnung der Stirnfläche werden 80 % der Fläche aus Karosseriehöhe und -breite vorgeschlagen.[11]

Eine umfassende Sammlung von Kraftfahrzeug-cw-Werten, für die es Belege gibt, wurde auf die Seite „Wikipedia-Auto und Motorrad-Portal/Luftwiderstandsbeiwert“ ausgelagert.

  1. Auch kompressible Fluide wie Luft können als inkompressibel betrachtet werden, wenn die Dichte im Strömungsfeld weitestgehend konstant ist. Das ist bis zu einer Mach-Zahl von 0,3 im Allgemeinen der Fall.
  • Sighard F. Hoerner: Fluid-Dynamic Drag. Eigenverlag, 1965.
  • Horst Stöcker (Hrsg.): Taschenbuch der Physik. 4. Auflage. Deutsch, Frankfurt am Main 2000, ISBN 3-8171-1628-4.
  • Hans-Hermann Braess, Ulrich Seiffert: Vieweg-Handbuch Kraftfahrzeugtechnik. 2. Auflage. Vieweg, Braunschweig 2001, ISBN 3-528-13114-4.
  • Karl-Heinz Dietsche, Thomas Jäger, Robert Bosch GmbH: Kraftfahrtechnisches Taschenbuch. 25. Auflage. Vieweg, Wiesbaden 2003, ISBN 3-528-23876-3.
  • Wolfgang Demtröder: Mechanik und Wärme. 4. Auflage. Springer, Berlin 2005, ISBN 3-540-26034-X (Experimentalphysik, Band 1).
  • Wolf-Heinrich Hucho: Aerodynamik des Automobils. Hrsg.: Thomas Schütz. 6. Auflage. Springer Vieweg, Wiesbaden 2013, ISBN 978-3-8348-2316-8, Einführung (über 1000, eingeschränkte Vorschau in der Google-Buchsuche).

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Ludwig Prandtl: Ergebnisse der Aerodynamischen Versuchsanstalt zu Göttingen, Teil 1. Universitätsverlag Göttingen 2009 (Ersterscheinung 1921) ISBN 978-3-941875-35-7 eingeschränkte Vorschau in der Google-Buchsuche
  2. Wolfgang-Heinrich Hucho: Aerodynamik des Automobils. Springer, Berlin 1999, ISBN 3-540-62160-1, S. 111–113.
  3. kfz-tech.de -   Luftwiderstand. Abgerufen am 5. September 2022.
  4. Wolf-Heinrich Hucho (Hrsg.): Aerodynamik des Automobils. 5. Auflage. Springer Fachmedien, Wiesbaden 2005, ISBN 3-663-09218-6, S. 276.
  5. Jürgen Zierep: Ähnlichkeitsgesetze und Modellregeln der Strömungslehre. Karlsruhe 1991, ISBN 3-7650-2041-9.
  6. Fall mit Luftwiderstand, dieter-heidorn.de, Material zu Kursen am Hansa-Kolleg, abrufbar 30. Mai 2018.
  7. a b ltam.lu (Memento vom 6. Oktober 2014 im Internet Archive)Vorlage:Webarchiv/Wartung/Linktext_fehlt
  8. Wolf-Heinrich Hucho: Aerodynamik des Automobils. Hrsg.: Thomas Schütz. 6. Auflage. Springer Vieweg, Wiesbaden 2013, ISBN 978-3-8348-1919-2, Einführung, S. 10–12 (eingeschränkte Vorschau in der Google-Buchsuche).
  9. kfz-tech.de -   Luftwiderstand. Abgerufen am 5. September 2022.
  10. autobild.de: Die Tops und Flops im Windkanal
  11. Robert Schoblick: Antriebe von Elektroautos in der Praxis. 1. Auflage. Franzis Verlag GmbH, 2013, ISBN 978-3-645-65166-0, S. 65.