aus Wikipedia, der freien Enzyklopädie
Zur Navigation springen
Zur Suche springen
Programmierung
Programmierung
|
Administration •
Links •
Vorgehensmodelle •
NuGet •
Transformations •
MSBuild •
Raspberry •
Cheatsheets •
Git •
Mathematica
|
C♯
|
|
F♯
|
|
Python
|
Classes •
Loops •
Anonymous Types •
Lambda Expressions •
Queries (LINQ) •
Iterators (yield)
|
PHP
|
|
T-SQL / SQL Server
|
T-SQL Fundamantals
|
Select •
Programming •
Pitfalls •
Query from Multiple Tables •
Groups and Summaries •
Advanced Select •
Aggregation and Windowing •
Insert, Update, Delete •
Strings •
Date and Time •
Numbers •
Transactions, Locking, Blocking, Deadlock •
Tables •
Views •
Large Tables and Databases •
Indexes •
Stored Procedures •
User-Defined Functions and Types •
Triggers •
Error Handling •
Query Performance and Tuning •
Hints •
Index Tuning and Statistics •
XML •
Files, Filegroups, Integrity •
Backup •
Recovery •
Principals and Users •
Securables, Permissions, Auditing •
Objects and Dependencies
|
SQL Server Performance Tuning
|
Memory Performance Analysis •
Disk Performance Analysis •
CPU Performance Analysis •
Baseline Creation •
Query Performance Metrics •
Query Performance Analysis •
Index Architecture and Behavior •
Index Analysis •
Database Engine Tuning Advisor •
Key Lookups •
Statistics, Data Distributuon, and Cardinality •
Index Fragmentation •
Execution Plan Generation •
Execution Plan Cache Behavior •
Parameter Sniffing •
Query Recompilation •
Query Design Analysis •
Reduce Query Resource Use •
Blocking and Blocked Processes •
Causes and Solutions for Deadlocks •
Row-By-Row Processing •
Memory-Optimized OLTP Tables and Procedures •
Database Performance Testing •
Database Workload Optimization •
SQL Server Optimization Checklist
|
Service Broker
|
Message •
Contract •
Queue •
Service •
.NET Integration •
Route •
Security
|
|
Datatypes •
Unit Testing •
Dependency Injection •
Partitioning •
|
|
.NET
|
|
ASP.NET
|
|
Messaging
|
|
User Interface
|
|
Parallel Programming
|
|
ECMAScript
|
|
SharePoint
|
|
Microsoft CRM
|
Reporting and Dashboards •
SharePoint Integration •
Authentication •
Entity Handling •
Workflows •
Queries
|
Security
|
Forms Authentication •
Membership and Role Provider •
Zertifikate •
OAuth •
OpenID •
Windows Identity Foundation
|
Dateiformate
|
CSV •
Excel •
Word •
PDF •
Email
|
Azure
|
|
Muster
|
|
Powershell
|
|
Android
|
ROM Flashen •
Unit Testing •
Assistant
|
Machine Learning
|
|
Core Server
|
Hyper-V •
Active Directory User Groups •
Active Directory Domain Services •
Active Directory Federation Services •
DHCP •
IIS •
DNS •
RDP •
WSUS •
User Permissions •
IP •
SMB •
DHCP •
IPAM •
Sonstige
|
Bot Framework
|
Rich Messages •
|
- Regression
- Regularization
- Instance-based
cake-based, memory-based
- Dimensionality reduction
- Deep Learnig
- Deep Boltzmann Machine (DBM)
- Deep Belief Networks (DBN)
- Convolutional Neural Network (CNN)
- Stacked Auto-Encoders
- Associated Rule
- Ensemble
- Gogit Boost (Boosting)
- Bootstrapped Aggregation (Bagging)
- AdaBoost
- Stacked Generalization (blending)
- Gradient Boosting Machines (GBM)
- Gradient Boosted Regression Trees (GBRT)
- Random Forest
- Bayesian
- Naive Bayes
- Gaussian Naive Bayes
- Multinomial Naive Bayes
- Averaged One-Dependence Estimators (AODE)
- Bayesian Belief Network (BBN)
- Bayesian Network (BN)
- Hidden Marhov Models
- Conditional random fields (CRFs)
- Decision tree
- Classification and Regression Tree (CART)
- Iterative Dichotomiser 3 (ID3)
- C4.5 and C4.5
- Chi-squared Automatic Interaction Detection (CHAID)
- Decision Stump
- M5
- Random Forests
- Conditional Decision Trees
- Clustering
- Single-linkage clustering
- k-Means
- k-Medians
- Expectation Maximisation (EM)
- Hierarchical Clustering
- Fuzzy Clustering
- DBSCAN
- OPTICS algorithm
- Non Negative Matrix Factorization
- Latent Dirichlet allocation (LDA)
- Neural Networks
- Self-Organizing Map
- Perceptron
- Hopfield Network
- Radial Basis Function Network
- Backpropagation
- Autoencoders
- Boltzmann Machines
- Restricted Boltzmann Machines
- Spiking Neural Networks
- Learing Vector Quantization (LVQ)
- Others
- ↑ Anubhav Srivastava: Which are the best known machine learning algorithms? In: Think Big Data. 9. April 2016, abgerufen am 2. Juli 2016 (englisch).
|