Benutzer:Schojoha/Spielwiese/Stochastik
Ungleichung von Lévy
[Bearbeiten | Quelltext bearbeiten]Die Ungleichung von Lévy (englisch Lévy’s inequality) ist eine stochastische Ungleichung innerhalb des Gebiets der Wahrscheinlichkeitsrechnung, welche auf den Mathematiker Paul Lévy (1886–1971) zurückgeht. Sie bezieht sich auf endliche Familien von unabhängigen reellwertigen Zufallsvariablen und liefert dafür eine obere Abschätzung unter Einbeziehung von Medianen. Nach A. N. Širjaevs Lehrbuch Wahrscheinlichkeit lässt sich nicht zuletzt mit Hilfe (einer speziellen Version) dieser Ungleichung ein Hilfssatz zum Beweis des Gesetzes vom iterierten Logarithmus für Summen von Zufallsvariablen gewinnen.[1][2]
Formulierung
[Bearbeiten | Quelltext bearbeiten]Die Ungleichung lässt sich wie folgt angeben:[2][3]
- Gegeben seien eine natürliche Zahl sowie ein Wahrscheinlichkeitsraum und dazu unabhängige reellwertige Zufallsvariablen und dabei sei für (wie üblich)
- [A 1]
- gesetzt.
- Weiter sei für reellwertige Zufallsvariable mit stets ein -Median gemeint.
- Dann ist für reelle Zahlen stets die Ungleichung
- erfüllt.
Spezialfall
[Bearbeiten | Quelltext bearbeiten]Die obige Ungleichung vereinfacht sich für den Fall, dass symmetrisch verteilte Zufallsvariablen vorliegen.[A 2] Es gilt nämlich gemäß Širjaev folgendes:[4]
- Sind die allgemeinen Voraussetzungen wie oben angegeben und sind überdies die Zufallsvariablen alle symmetrisch um Null verteilt, so ist die Ungleichung
- gültig.
Varianten
[Bearbeiten | Quelltext bearbeiten]Nach Darstellung von Michel Loève in dessen Lehrbuch Probability Theory I und ebenso nach der von Laha/Rohatgi in deren Lehrbuch Probability Theory (s. u.) spricht man sogar von zwei Ungleichungen von Lévy (englisch Lévy inequalities).[A 3] Sie lassen sich folgendermaßen angeben:[5][6]
- Unter den zuvor angegebenen Grundvoraussetzungen sind für reelle Zahlen stets die beiden Ungleichungen
- (i)
- und
- (ii) [A 4]
- erfüllt.
Verallgemeinerungen
[Bearbeiten | Quelltext bearbeiten]Es existieren Verallgemeinerungen der Ungleichung von Lévy und darunter sogar eine mit dieser direkt verwandte Ungleichung, welche die obige Variante (ii) (bei fast gleichem Wortlaut) auf den Fall verallgemeinert, dass (vergleichbar dem obigen Spezialfall) endlich viele symmetrisch verteilte Zufallsvariablen vorliegen, die dann aber sogar Werte in einem beliebigen separablen Banachraum annehmen dürfen, wobei dessen Norm dann an die Stelle der obigen Betragsfunktion tritt.[7][8]
Literatur
[Bearbeiten | Quelltext bearbeiten]- M. Loève: Probability Theory I (= Graduate Texts in Mathematics. Band 45). 4. Auflage. Springer Verlag, New York, Heidelberg, Berlin 1977, ISBN 3-540-90210-4 (MR0651017).
- R. G. Laha, V. K. Rohatgi: Probability Theory (= Wiley Series in Probability and Mathematical Statistics). John Wiley & Sons, New York, Chichester, Brisbane, Toronto 1979, ISBN 0-471-03262-X (MR0534143).
- A. I. Sakhanenko: On Lévy–Kolmogorov Inequalities for Banach-Space-Valued Random Variables. In: Theory of Probability & Its Applications. Band 29, 1985, S. 830–836, doi:10.1137/1129113 (MR0773454).
- A. N. Širjaev: Wahrscheinlichkeit (= Hochschulbücher für Mathematik. Band 91). VEB Deutscher Verlag der Wissenschaften, Berlin 1988, ISBN 3-326-00195-9 (MR0967761).
- Guido Walz (Hrsg.): Lexikon der Mathematik in sechs Bänden. Dritter Band. Inp bis Mon. Springer Spektrum, Heidelberg, Berlin 2001, ISBN 3-8274-0435-5.
Weblinks
[Bearbeiten | Quelltext bearbeiten]Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]rreferences />
Anmerkungen
[Bearbeiten | Quelltext bearbeiten]rreferences group="A" />
KKKategorie:Wahrscheinlichkeitsrechnung]] KKKategorie:Ungleichung (Stochastik)|Lévy, Ungleichung von]]
Wiederkehrsatz von Kac
[Bearbeiten | Quelltext bearbeiten]In der Ergodentheorie, einem der Teilgebiete der Mathematik, behandelt der Wiederkehrsatz von Kac die Frage, nach welcher mittleren Wiederkehrzeit bei diskreten ergodischen Systemen eines Wahrscheinlichkeitsraums die Elemente gewisser messbarer Mengen zum ersten Mal wieder zu diesen Mengen zurückkehren. Dieser Lehrsatz geht auf eine wissenschaftliche Arbeit des Mathematikers Marek Kac (1914–1984) aus dem Jahre 1947 zurück und schließt an den Wiederkehrsatz von Poincaré an.[9][10]
Formulierung des Satzes
[Bearbeiten | Quelltext bearbeiten]Der Satz lässt sich zusammengefasst folgendermaßen formulieren:[11][12]
- Gegeben seien ein Wahrscheinlichkeitsraum und dazu eine auf ergodische Transformation .
- Weiter sei eine messbare Menge gegeben und es gelte .
- Dann gilt hinsichtlich der mittleren Wiederkehrzeit die Gleichung
- .
Erläuterungen und Anmerkungen
[Bearbeiten | Quelltext bearbeiten]- Für und betrachtet man den Wert als die Wiederkehrzeit, mit der zum ersten Mal nach zurückkehrt. Die so gegebene numerische Funktion ist eine –fast überall endliche und –integrierbare Funktion.
- Für ist das auf eingeschränkte Maß.
- In der englischsprachigen Fachliteratur wird der obige Wiederkehrsatz als Kac's recurrence theorem oder mitunter auch einfach als Kac's theorem bezeichnet.
Literatur
[Bearbeiten | Quelltext bearbeiten]- Gilbert Helmberg, Fred H. Simons: A dualization of Kac's recurrence theorem. In: Indagationes Mathematicae. Band 28, 1966, S. 608–615 (MR0224772).
- Konrad Jacobs (Hrsg.): Selecta Mathematica. IV (= Heidelberger Taschenbücher. Band 98). Springer-Verlag, Berlin, Heidelberg, New York 1972, ISBN 3-540-05782-X.
- M. Kac: On the notion of recurrence in discrete stochastic processes. In: Bulletin of the American Mathematical Society. Band 53, 1947, S. 1002–1010 (MR0022323).
- Mark Pollicott, Michiko Yuri: Dynamical Systems and Ergodic Theory. Transferred to digital printing 2008 (= London Mathematical Society Student Texts. Band 40). Cambridge University Press, Cambridge 1998, ISBN 978-0-521-57294-1 (MR1627681).
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]rrreferences />
KKKategorie:Ergodentheorie|Kac, Wiederkehrsatz von]]
KKKategorie:Satz (Mathematik)|Kac, Wiederkehrsatz von]]
Satz von Mourier
[Bearbeiten | Quelltext bearbeiten]Der Satz von Mourier ist ein Lehrsatz der Wahrscheinlichkeitsrechnung, einem der Teilgebiete der Mathematik. Er geht auf die französische Mathematikerin Édith Mourier zurück und formuliert eine hinreichende Bedingung zum Bestehen des starken Gesetzes der großen Zahlen für gewisse Folgen von Zufallselementen in einem separablen Banachraum. Der Satz lässt sich als Verallgemeinerung des zweiten kolmogorowschen Gesetzes der großen Zahlen auffassen.
Formulierung des Satzes
[Bearbeiten | Quelltext bearbeiten]Der Satz lässt sich angeben wie folgt:[13][14][15]
- Gegeben seien ein Wahrscheinlichkeitsraum , ein separabler Banachraum und eine Folge
- von Zufallselementen in .
- Die Folge sei stochastisch unabhängig und ihre Glieder seien identisch verteilt.
- Dabei gelte
- .
- Dann gilt -fast sicher die Konvergenz
- .
Erläuterungen
[Bearbeiten | Quelltext bearbeiten]- Eine Borel-messbare Zufallsvariable mit Werten in einem topologischen Raum wird allgemein als Zufallselement bezeichnet.
- Bei einem Zufallselement mit Werten in einem separablen normierten Vektorraum wird mit stets dessen Erwartungswert bezeichnet, sofern dieser definiert ist. Er ist zumindest immer dann definiert, wenn für das Pettis-Integral existiert. Ist dies der Fall, so ist der Erwartungswert gleich dem Pettis-Integral. Der Erwartungswert zeichnet sich dadurch aus, dass für stetige Linearformen stets gilt.[16]
- Für ein Zufallselement mit Werten in einem separablen Banachraum ist stets eine reelle Zufallsvariable.[17] Ist dabei sogar , so existiert auch der Erwartungswert .[18]
Verwandtes Resultat im Zusammenhang mit Kolmogorows Erstem Gesetz der großen Zahlen
[Bearbeiten | Quelltext bearbeiten]Ausgehend von dem Satz von Mourier ergibt sich die Frage, ob und inwieweit Kolmogorows Erstes Gesetz der großen Zahlen auf Folgen von Zufallselementen in normierten Vektorräumen auszudehnen ist. Wie sich zeigen lässt, ist diese Ausdehnung zumindest immer im Falle der separablen Hilberträume möglich. Es gilt nämlich der folgende Satz:[19]
- Gegeben seien ein Wahrscheinlichkeitsraum , ein separabler Hilbertraum [20] und eine Folge
- von Pettis-integrierbaren Zufallselementen in .
- Die Folge sei stochastisch unabhängig und es gelte
- .
- Dann genügt die Folge der Bedingung
- und damit dem Starken Gesetz der großen Zahlen.
Quellen und Hintergrundliteratur
[Bearbeiten | Quelltext bearbeiten]- P. Gänssler, W. Stute: Wahrscheinlichkeitstheorie (= Hochschultext. Band 91). Springer Verlag, Berlin, Heidelberg, New York 1977, ISBN 3-540-08418-5.MR0501219
- R. G. Laha, V. K. Rohatgi: Probability Theory (= Wiley Series in Probability and Mathematical Statistics). John Wiley & Sons, New York (u. a.) 1979, ISBN 0-471-03262-X. MR0534143
- Michel Ledoux, Michel Talagrand: Probability in Banach Spaces. Isoperimetry and Processes (= Ergebnisse der Mathematik und ihrer Grenzgebiete (3. Folge). Band 23). Springer Verlag, Berlin (u. a.) 1991, ISBN 3-540-52013-9. MR1102015
- Édith Mourier: Eléments aléatoires dans un espace de Banach. In: Annales de l'Institut Henri Poincaré. Band 13, 1953, S. 161–244. MR0064339
- Pál Révész: Die Gesetze der grossen Zahlen (= Lehrbücher und Monographien aus dem Gebiete der Exakten Wissenschaften: Mathematische Reihe. Band 35). Birkhäuser Verlag, Basel, Stuttgart 1968. MR0245080
- N. N. Vakhania, V. I. Tarieladze, S. A. Chobanyan: Probability Distributions on Banach Spaces (= Mathematics and its Applications (Soviet Series). Band 14). D. Reidel Publishing Company, Dordrecht, Boston, Lancaster, Tokio 1987, ISBN 90-277-2496-2.
Einzelnachweise und Fußnoten
[Bearbeiten | Quelltext bearbeiten]Kreferences />
KKKategorie:Stochastik]]
KKKategorie:Wahrscheinlichkeitsrechnung]]
KKKategorie:Satz (Mathematik)|Mourier]]
(Un?)gleichung von Steiner
[Bearbeiten | Quelltext bearbeiten]Die Ungleichung von Steiner ist eine elementare stochastische Ungleichung, welche dem Mathematiker Jakob Steiner zugerechnet wird. Sie ist verwandt mit der Tschebyscheff-Ungleichung und dem steinerschen Verschiebungssatz und liefert eine Abschätzung der Varianz einer reellen Zufallsvariablen unter Bezug auf Erwartungswerte zugehöriger Zufallsvariablen.[21]
Formulierung der Ungleichung
[Bearbeiten | Quelltext bearbeiten]Die steinersche Ungleichung lässt sich angeben wie folgt:
- Gegeben seien ein Wahrscheinlichkeitsraum und eine reelle Zufallsvariable .
- besitze ein endliches zweites Moment:
- .[22]
- Dann gilt für jede reelle Zahl die Ungleichung
- .[23]
Quellen
[Bearbeiten | Quelltext bearbeiten]- Christian Hesse: Wahrscheinlichkeitstheorie. Eine Einführung mit Beispielen und Anwendungen. Vieweg+Teubner, Wiesbaden 2009, ISBN 978-3-8348-0969-8.
Einzelnachweise und Fußnoten
[Bearbeiten | Quelltext bearbeiten]Kreferences />
KKKategorie:Stochastik]] KKKategorie:Wahrscheinlichkeitsrechnung]] KKKategorie:Ungleichung|Steiner]]
Ungleichung von Cantelli
[Bearbeiten | Quelltext bearbeiten]Die Ungleichung von Cantelli ist eine elementare stochastische Ungleichung, die auf den italienischen Mathematiker Francesco Paolo Cantelli zurückgeht. Sie ist verwandt mit der tschebyschow-markowschen Ungleichung und liefert eine einseitige Abschätzung für die Wahrscheinlichkeit, dass eine reelle Zufallsvariable ihren Erwartungswert um eine positive Zahl übersteigt.[24]
Formulierung der Ungleichung
[Bearbeiten | Quelltext bearbeiten]Die cantellische Ungleichung lässt sich angeben wie folgt:
- Gegeben seien ein Wahrscheinlichkeitsraum und eine reelle Zufallsvariable .
- besitze ein endliches zweites Moment:
- .[25]
- Weiter sei eine reelle Zahl gegeben.
- Dann besteht die Ungleichung
- .[26]
Beweis der Ungleichung
[Bearbeiten | Quelltext bearbeiten]Der Darstellung von Klaus D. Schmidt folgend lässt sie sich folgendermaßen herleiten:
Schritt 1
[Bearbeiten | Quelltext bearbeiten]Man setzt
- .
Dann ist zunächst
und weiter
- .
Schritt 2
[Bearbeiten | Quelltext bearbeiten]Hat man nun eine (zunächst beliebige) reelle Zahl , so ergibt sich - insbesondere wegen der tschebyschow-markowschen Ungleichung für zweite Momente - die folgende Ungleichungskette:
- .
Schritt 3
[Bearbeiten | Quelltext bearbeiten]Insbesondere für die reelle Zahl
gilt nach Schritt 2:
- .
Damit ist alles bewiesen.
Anmerkung
[Bearbeiten | Quelltext bearbeiten]Die in obigem Schritt 2 auftretende reellwertige Funktion
nimmt an der genannten Stelle
ihr absolutes Minimum an. Die in der cantellischen Ungleichung genannte obere Schranke ist also in diesem Sinne optimal.
Quellen
[Bearbeiten | Quelltext bearbeiten]- Klaus D. Schmidt: Maß und Wahrscheinlichkeit (= Springer-Lehrbuch). Springer Verlag, Berlin, Heidelberg 2009, ISBN 978-3-540-89729-3.
Einzelnachweise und Fußnoten
[Bearbeiten | Quelltext bearbeiten]Kreferences />
KKKategorie:Stochastik]] KKKategorie:Wahrscheinlichkeitsrechnung]] KKKategorie:Ungleichung|Cantelli]]
Ungleichung von Ljapunow
[Bearbeiten | Quelltext bearbeiten]Die Ungleichung von Ljapunow ist eine elementare stochastische Ungleichung, welche auf den russischen Mathematiker Alexander Michailowitsch Ljapunow zurückgeht. Sie stellt eine Isotonieeigenschaft der absoluten Momente reeller Zufallsvariablen dar und lässt sich unter Anwendung der jensenschen Ungleichung für Erwartungswerte ableiten.
Formulierung der Ungleichung
[Bearbeiten | Quelltext bearbeiten]In Anschluss an die Darstellung von A. N. Širjaev bzw. Marek Fisz lässt sich die ljapunowsche Ungleichung zusammengefasst angeben wie folgt:[27][28]
- Gegeben seien ein Wahrscheinlichkeitsraum und eine reelle Zufallsvariable .
- Dann gilt für je zwei reelle Zahlen und mit stets die Ungleichung
- .
- Insbesondere hat man stets die Ungleichungskette
- .
Andere Darstellung
[Bearbeiten | Quelltext bearbeiten]Für die ljapunowsche Ungleichung gibt es auch die folgende allgemeinere Darstellung :[29]
- Für eine reelle Zufallsvariable eines Wahrscheinlichkeitsraums .
- und für nichtnegative reelle Zahlen mit gilt stets die Ungleichung
- .
Zu dieser Darstellung existieren auch noch andere äquivalente Versionen.[30][31]
Quellen und Hintergrundliteratur
[Bearbeiten | Quelltext bearbeiten]- Heinz Bauer: Wahrscheinlichkeitstheorie (= De Gruyter Lehrbuch). 5., durchgesehene und verbesserte Auflage. de Gruyter, Berlin, New York 2002, ISBN 3-11-017236-4. MR1902050
- Harald Cramér: Mathematical Methods of Statistics (= Princeton Mathematical Series). 11. Auflage. Princeton University Press, Princeton 1966.
- Marek Fisz: Wahrscheinlichkeitsrechnung und mathematische Statistik (= Hochschulbücher für Mathematik. Band 40). 8. Auflage. VEB Deutscher Verlag der Wissenschaften, Berlin 1976.
- A. M. Liapounoff: Nouvelle forme du théorème sur la limite de probabilité. In: Mémoires de l'Académie Impériale des Sciences de Saint Pétersbourg. Band 12, Nr. 5, 1901.
- A. M. Liapounoff: Sur une proposition de la théorie des probabilités. In: Bulletin de l'Académie impériale des sciences de Saint-Pétersbourg. Band 13, 1900, S. 359.
- M. Loève: Probability Theory I (= Graduate Texts in Mathematics. Band 45). 4. Auflage. Springer Verlag, Berlin, Heidelberg 1977, ISBN 3-540-90210-4. MR0651017
- A. N. Širjaev: Wahrscheinlichkeit (= Hochschulbücher für Mathematik. Band 91). VEB Deutscher Verlag der Wissenschaften, Berlin 1988, ISBN 3-326-00195-9.MR0967761
- J. V. Uspensky: Introduction to Mathematical Probability. MacGraw-Hill Book Company, Inc., New York, London 1937.
Einzelnachweise und Fußnoten
[Bearbeiten | Quelltext bearbeiten]Kreferences />
KKKategorie:Stochastik]] KKKategorie:Wahrscheinlichkeitsrechnung]] KKKategorie:Ungleichung|Ljapunow]]
Satz von Cantelli
[Bearbeiten | Quelltext bearbeiten]Der Satz von Cantelli ist ein Lehrsatz der Wahrscheinlichkeitsrechnung, einem der Teilgebiete der Mathematik. Er geht auf den italienischen Mathematiker Francesco Paolo Cantelli zurück und formuliert eine hinreichende Bedingung zum Bestehen des Starken Gesetzes der großen Zahlen für gewisse Folgen reeller Zufallsvariablen. Der cantellische Satz gilt als eines der ersten Resultate dieser Art.
Formulierung des Satzes
[Bearbeiten | Quelltext bearbeiten]Der cantellische Satz lässt sich angeben wie folgt:[27]
- Gegeben seien ein Wahrscheinlichkeitsraum und eine Folge von Zufallsvariablen
- auf diesem Wahrscheinlichkeitsraum.
- Die Folge sei stochastisch unabhängig und mit endlichen vierten Momenten:
- .[32]
- Darüber hinaus seien die zentralen vierten Momente gleichmäßig nach oben beschränkt:
- .
- Dann genügt die Folge -fast sicher der Konvergenz
- und damit dem Starken Gesetz der großen Zahlen.
Beweis des Satzes nach Širjaev
[Bearbeiten | Quelltext bearbeiten]Man setzt für
und weiter für
sowie
Dann ist für
- (0)
und folglich ist zu zeigen, dass
- (1)
gilt.
Zieht man nun die im letzten Abschnitt des Artikels zum Borel-Cantelli-Lemma genannten Folgerung sowie die tschebyscheff-markoffsche Ungleichung in Betracht, so sieht man, dass ausreicht, die Konvergenz der Reihe
- (2)
nachzuweisen.
Dazu wertet man die Glieder der Reihe (2) unter Anwendung des Polynomialsatzes aus!
Es ist nämlich:
- (3) .
Nun fallen bei der Bildung der Erwartungswerte zu (3) allein diejenigen Summanden ins Gewicht, für welche bei den zugehörigen ausschließlich die Hochzahlen oder auftreten.
Denn in allen anderen Fällen kommt zumindest ein mit Hochzahl vor und es leisten wegen der Linearität des Erwartungswerts, der Unabhängigkeitsvoraussetzung und wegen (0) in dem Erwartungswert zu (3) allein die Summanden mit geraden Hochzahlen einen Beitrag .
Somit hat man
- (4) .
Mit (4) und unter Anwendung der Voraussetzung sowie der Ungleichung von Ljapunow ergibt sich dann die folgende Ungleichungskette:
- (5) .
Die Ungleichungskette (5) zieht unter Berücksichtigung der Konvergenz der Zeta-Reihe ihrerseits die Ungleichungskette
- (6)
nach sich und damit auch (2) .
Damit ist alles bewiesen.
Quellen und Hintergrundliteratur
[Bearbeiten | Quelltext bearbeiten]- A. N. Širjaev: Wahrscheinlichkeit (= Hochschulbücher für Mathematik. Band 91). VEB Deutscher Verlag der Wissenschaften, Berlin 1988, ISBN 3-326-00195-9. MR0967761
- Eugenio Regazzini: Probability and statistics in Italy during the First World War. I: Cantelli and the laws of large numbers. In: Electronic Journ@l for History of Probability and Statistics. Band 1, 2005, S. 1–12 ([1] [PDF]). MR2208347
Einzelnachweise und Fußnoten
[Bearbeiten | Quelltext bearbeiten]Kreferences />
KKKategorie:Stochastik]]
KKKategorie:Wahrscheinlichkeitsrechnung]]
KKKategorie:Satz (Mathematik)|Cantelli]]
Ungleichung von Ottaviani-Skorokhod
[Bearbeiten | Quelltext bearbeiten]Die Ungleichung von Ottaviani-Skorokhod ist eine stochastische Ungleichung innerhalb des Gebiets der Wahrscheinlichkeitsrechnung, welche auf die beiden Mathematiker Giuseppe Ottaviani und Anatoli Skorokhod zurückgeht. Sie bezieht sich auf endliche Familien von stochastisch unabhängigen reellen Zufallsvariablen und stellt ein nützliches Hilfsmittel für Beweise im Umfeld des Starken Gesetzes der großen Zahlen dar.[33]
Formulierung der Ungleichung
[Bearbeiten | Quelltext bearbeiten]Der Darstellung von Heinz Bauer folgend lässt sich die Ungleichung angeben wie folgt:[33]
- Gegeben seien ein Wahrscheinlichkeitsraum und darauf endlich viele unabhängige Zufallsvariablen
- Sei hierbei für
- gesetzt.
- Dann ist für jeden Index und für zwei reelle Zahlen und
- die Ungleichung
- .[34]
- erfüllt.
Folgerungen: Ein Satz von Lévy und weitere Korollare
[Bearbeiten | Quelltext bearbeiten]Mit der Ungleichung von Ottaviani-Skorokhod lassen sich der folgende Satz des französischen Mathematikers Paul Lévy herleiten und einige Korollare herleiten.
Der lévysche Satz besagt:[33]
- Für jede unabhängige Folge reeller Zufallsvariablen folgt aus der stochastischen Konvergenz der Reihe die fast sichere Konvergenz dieser Reihe.
Daraus erhält man folgendes Korollar:
- Ist eine unabhängige Folge reeller Zufallsvariablen mit
- (1)
- (2)
- so ist die Reihe fast sicher konvergent.
Aus diesem Korollar gewinnt man dann unter Anwendung des kroneckerschen Lemmas unmittelbar das kolmogoroffsche Kriterium zum Starken Gesetz der großen Zahlen:
- Ist eine unabhängige Folge von integrierbaren reellen Zufallsvariablen mit
- (*)
- so genügt die Folge dem Starken Gesetz der großen Zahlen.
Anmerkung
[Bearbeiten | Quelltext bearbeiten]- Die Ungleichung von Ottaviani-Skorokhod (und auch Abwandlungen derselben) verbinden einige Autoren nur mit dem Namen von Giuseppe Ottaviani verbunden und bezeichnen diese als Ungleichung von Ottaviani bzw. als ottavianische Ungleichung (englisch Ottaviani's inequality) . Vielfach wird dabei auch allein der Fall behandelt.[35][36][27]
- Die oben dargestellte Ungleichung, die unabhängige reelle Zufallsvariablen zugrundelegt, lässt sich in entsprechender Weise auch für unabhängige borelmessbare Zufallsvariablen mit Werten in einem separablen Banachraum formulieren. Dabei tritt an die Stelle der obigen Betragsfunktion die Norm des Banachraums.[37]
Quellen und Hintergrundliteratur
[Bearbeiten | Quelltext bearbeiten]Originalarbeiten
[Bearbeiten | Quelltext bearbeiten]- Nasrollah Etemadi: Maximal inequalities for partial sums of independent random vectors with multi-dimensional time parameters. In: Communications in Statistics. Theory and Methods. Band 20, 1991, S. 3909–3923. MR1158554
- G. Ottaviani: Sulla teoria astratta del calcolo delle probabilità proposita dal Cantelli. In: Giornale dell'Istituto Italiano degli Attuari. Band 10, 1939, S. 10–40.
Monographien
[Bearbeiten | Quelltext bearbeiten]- Heinz Bauer: Wahrscheinlichkeitstheorie (= De Gruyter Lehrbuch). 5., durchgesehene und verbesserte Auflage. de Gruyter, Berlin, New York 2002, ISBN 3-11-017236-4. MR1902050
- J. Hoffmann-Jørgensen: Probability with a View toward Statistics. Volume I (= Chapman & Hall Probability Series. Band 91). Chapman & Hall, New York 1994, ISBN 0-412-05221-0.MR1278485
- Oleg Klesov: Limit Theorems for Multi-Indexed Sums of Random Variables (= Probability Theory and Stochastic Modelling). Springer Verlag, Heidelberg, New York, Dordrecht, London 2014, ISBN 978-3-662-44387-3, doi:10.1007/978-3-662-44388-0. MR3244237
- Michel Ledoux, Michel Talagrand: Probability in Banach Spaces. Isoperimetry and Processes (= Ergebnisse der Mathematik und ihrer Grenzgebiete (3. Folge). Band 23). Springer Verlag, Berlin (u. a.) 1991, ISBN 3-540-52013-9. MR1102015
- A. N. Širjaev: Wahrscheinlichkeit (= Hochschulbücher für Mathematik. Band 91). VEB Deutscher Verlag der Wissenschaften, Berlin 1988, ISBN 3-326-00195-9.MR0967761
Einzelnachweise und Fußnoten
[Bearbeiten | Quelltext bearbeiten]Kreferences />
KKKategorie:Stochastik]] KKKategorie:Wahrscheinlichkeitsrechnung]] KKKategorie:Ungleichung|Ottaviani-Skorokhod]]
Satz von Gliwenko-Cantelli (Überarbeitung)
[Bearbeiten | Quelltext bearbeiten]Der Satz von Gliwenko-Cantelli oder Satz von Gliwenko, auch Hauptsatz der mathematischen Statistik oder Fundamentalsatz der Statistik genannt, englisch Central statistical theorem, ist ein mathematischer Lehrsatz auf dem Gebiet der Wahrscheinlichkeitsrechnung, welcher auf zwei Arbeiten die beiden Mathematiker Waleri Iwanowitsch Gliwenko und Francesco Cantelli aus dem Jahre 1933 zurückgeht. Aus dem Satz geht hervor, dass bei unabhängig durchgeführten Zufallsversuchen die aus den Zufallsstichproben gewonnenen empirischen Verteilungsfunktionen einer Zufallsgröße gleichmäßig mit Wahrscheinlichkeit Eins gegen deren tatsächliche Verteilungsfunktion konvergieren und dass dadurch die Möglichkeit der Schätzung dieser Verteilungsfunktion gegeben ist.
Formulierung des Satzes im Einzelnen
[Bearbeiten | Quelltext bearbeiten]Der Satz lässt sich angeben wie folgt:[38][28][39][40][41][42]
Gegeben seien ein Wahrscheinlichkeitsraum
und darauf eine Folge
von stochastisch unabhängigen und identisch verteilten Zufallsvariablen mit gemeinsamer Verteilungsfunktion .
Die zum Stichprobenumfang gehörige empirische Verteilungsfunktion ist
- mit
- .[43]
Hierzu hat man auf dem gegebenen Wahrscheinlichkeitsraum die Zufallsvariable
- mit
- ,[44]
welche die obere Grenze aller Abstände dieser empirischen Verteilung von der gemeinsamen Verteilung unter Berücksichtigung alle nur möglichen Ausprägungen angibt.
Dann gilt:
- Die konvergieren mit Wahrscheinlichkeit 1, also fast sicher, gegen Null.
- Es gilt also
- .
Anmerkungen
[Bearbeiten | Quelltext bearbeiten]- Der Satz ergibt sich als Anwendung des kolmogorowschen Gesetzes der großen Zahlen.
- Er ist in verschiedene Richtungen verallgemeinert und abgewandelt worden. Einen Eindruck davon gibt die Arbeit des dänischen Mathematikers Flemming Topsøe aus dem Jahre 1970.[45]
Quellen und Hintergrundliteratur
[Bearbeiten | Quelltext bearbeiten]Originalarbeiten
[Bearbeiten | Quelltext bearbeiten]- F. P. Cantelli: Sulla determinazione empirica delle leggi di probabilita. In: Giornale dell'Istituto Italiano degli Attuari. Band 4, 1933, S. 221 ff.
- V. Glivenko: Sulla determinazione empirica della legge di probabilita. In: Giornale dell'Istituto Italiano degli Attuari. Band 4, 1933, S. 92–99.
- Flemming Topsøe: On the Glivenko-Cantelli theorem. In: Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete. Band 14, 1970, S. 239–250 ([2]). MR0292143
Monographien
[Bearbeiten | Quelltext bearbeiten]- Krishna B. Athreya, Soumendra N. Lahiri: Measure Theory and Probability Theory (= Springer Texts in Statistics). Springer Verlag, New York 2006, ISBN 978-0-387-32903-1. MR2247694
- Kai Lai Chung: A Course in Probability Theory. Academic Press, Inc., San Diego (u. a.) 2001, ISBN 0-12-174151-6. MR1796326
- Marek Fisz: Wahrscheinlichkeitsrechnung und mathematische Statistik (= Hochschulbücher für Mathematik. Band 40). 10. Auflage. VEB Deutscher Verlag der Wissenschaften, Berlin 1980.
- Boris Wladimirowitsch Gnedenko: Lehrbuch der Wahrscheinlichkeitstheorie. Verlag Harri Deutsch, Thun, Frankfurtam Main 1997, ISBN 3-8171-1531-8.
- Achim Klenke: Wahrscheinlichkeitstheorie. 3., überarbeitete und ergänzte Auflage. Springer Spektrum, Berlin, Heidelberg 2013, ISBN 978-3-642-36017-6, doi:10.1007/978-3-642-36018-6.
- Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung (= Springer-Lehrbuch). 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin, Heidelberg 2014, ISBN 978-3-642-45386-1.
- M. Loève: Probability Theory I (= Graduate Texts in Mathematics. Band 45). 4. Auflage. Springer Verlag, Berlin, Heidelberg 1977, ISBN 3-540-90210-4. MR0651017
- Klaus D. Schmidt: Maß und Wahrscheinlichkeit (= Springer-Lehrbuch). Springer Verlag, Berlin, Heidelberg 2009, ISBN 978-3-540-89729-3.
- Vladimir Spokoiny, Thorsten Dickhaus: Basics of Modern Mathematical Statistics (= Springer Texts in Statistics). Springer-Verlag, Heidelberg, New York, Dordrecht, London 2015, ISBN 978-3-642-39908-4. MR3289985
- Walter Vogel: Wahrscheinlichkeitstheorie (= Studia Mathematica. Band XXII). Vandenhoeck & Ruprecht, Göttingen 1970. MR0286145
Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]Kreferences />
KKKategorie:Wahrscheinlichkeitsrechnung]]
KKKategorie:Stochastik]]
KKKategorie:Zufallsvariable]]
KKKategorie:Schätztheorie]]
KKKategorie:Satz (Mathematik)]]
Ungleichungen von Benferroni (Unfertig)
[Bearbeiten | Quelltext bearbeiten]Der Ungleichungen von Benferroni sind mathematische Resulate auf dem Gebiet der Maßtheorie, welche auf den Mathematiker Benferroni zurückgehen. ...
Formulierung des Satzes
[Bearbeiten | Quelltext bearbeiten]Die Ungleichungen von Benferroni lassen sich angeben wie folgt:[46]
Quellen und Hintergrundliteratur
[Bearbeiten | Quelltext bearbeiten]- Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie. Eine Einführung (= Springer-Lehrbuch). 2., überarbeitete und erweiterte Auflage. Springer-Verlag, Berlin, Heidelberg 2014, ISBN 978-3-642-45386-1.
Einzelnachweise und Fußnoten
[Bearbeiten | Quelltext bearbeiten]Kreferences />
KKKategorie:Stochastik]]
KKKategorie:Wahrscheinlichkeitsrechnung]]
KKKategorie:Satz (Mathematik)|Marcinkiewicz]]
Satz von Marcinkiewicz (Unfertig)
[Bearbeiten | Quelltext bearbeiten]Der Satz von Marcinkiewicz ist ein mathematischer Lehrsatz auf dem Gebiet der Wahrscheinlichkeitsrechnung, welcher auf den italienischen Mathematiker Marcinkiewicz zurückgeht. ...
Formulierung des Satzes
[Bearbeiten | Quelltext bearbeiten]Der Marcinkiewicz-Satz lässt sich angeben wie folgt:[27]
Quellen und Hintergrundliteratur
[Bearbeiten | Quelltext bearbeiten]- A. N. Širjaev: Wahrscheinlichkeit (= Hochschulbücher für Mathematik. Band 91). VEB Deutscher Verlag der Wissenschaften, Berlin 1988, ISBN 3-326-00195-9.MR0967761
Einzelnachweise und Fußnoten
[Bearbeiten | Quelltext bearbeiten]Kreferences />
KKKategorie:Stochastik]]
KKKategorie:Wahrscheinlichkeitsrechnung]]
KKKategorie:Satz (Mathematik)|Marcinkiewicz]]
Dreireihensatz
[Bearbeiten | Quelltext bearbeiten]Der Dreireihensatz, manchmal auch als kolmogoroffscher Dreireihensatz bezeichnet, englisch Kolmogorov's three-series theorem, ist ein mathematischer Lehrsatz auf dem Gebiet der Wahrscheinlichkeitsrechnung, welcher auf eine Arbeit der beiden russischen Mathematiker Alexander Jakowlewitsch Khintchine und Andrei Nikolajewitsch Kolmogoroff aus dem Jahre 1925 zurückgeht. Der Satz behandelt die Frage, unter welchen Bedingungen eine aus stochastisch unabhängigen reellen Zufallsvariablen gebildete Reihe fast sicher konvergiert und führt diese Frage auf das Konvergenzverhalten dreier zugehöriger Reihen reeller Größen zurück. Er steht in engem Zusammenhang mit dem Starken Gesetz der großen Zahlen.[39][47][48][28][49]
Formulierung des Satzes
[Bearbeiten | Quelltext bearbeiten]Der Satz lässt sich in moderner Fomulierung angeben wie folgt:
- Gegeben seien ein Wahrscheinlichkeitsraum und darauf eine Folge von stochastisch unabhängigen Zufallsvariablen.
- Dann gilt:
- Dann und nur dann ist die Reihe fast sicher konvergent,
- wenn eine reelle Zahl existiert derart, dass die drei dazu gebildeten Reihen
- (1)
- (2)
- (3)
- in konvergieren, wobei die Folge der Zufallsvariablen gebildet wird, indem für
- gesetzt wird.[50]
Quellen und Hintergrundliteratur
[Bearbeiten | Quelltext bearbeiten]- Krishna B. Athreya, Soumendra N. Lahiri: Measure Theory and Probability Theory (= Springer Texts in Statistics). Springer Verlag, New York 2006, ISBN 978-0-387-32903-1. MR2247694
- Kai Lai Chung: A Course in Probability Theory. Academic Press, Inc., San Diego (u. a.) 2001, ISBN 0-12-174151-6. MR1796326
- Marek Fisz: Wahrscheinlichkeitsrechnung und mathematische Statistik (= Hochschulbücher für Mathematik. Band 40). 8. Auflage. VEB Deutscher Verlag der Wissenschaften, Berlin 1976.
- Achim Klenke: Wahrscheinlichkeitstheorie. Springer Verlag, Berlin, Heidelberg, New York 2006, ISBN 978-3-540-25545-1.
- A. Kolmogoroff: Grundbegriffe der Wahrscheinlichkeitsrechnung. Reprint (= Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 3). Springer Verlag, Berlin, Heidelberg, New York 1973, ISBN 3-540-06110-X. MR0494348
- A. Kolmogoroff: Über die Summen durch den Zufall bestimmter unabhängiger Größen. In: Mathematische Annalen. Band 99, 1928, S. 309–319 ([3]). MR1512588
- A. J. Khintchine und A. N. Kolmogoroff: Über Konvergenz von Reihen, deren Glieder durch den Zufall bestimmt werden. In: Recueil mathématique de la Société mathématique de Moscou [Matematicheskii Sbornik]. Band 32, 1925, S. 668–677.
Einzelnachweise und Fußnoten
[Bearbeiten | Quelltext bearbeiten]Kreferences /> KKKategorie:Stochastik]] KKKategorie:Wahrscheinlichkeitsrechnung]] KKKategorie:Satz (Mathematik)|Dreireihensatz]]
Lemma von Frank
[Bearbeiten | Quelltext bearbeiten]Das Lemma von Frank ist ein mathematischer Lehrsatz auf dem Gebiet der Wahrscheinlichkeitsrechnung, welcher auf den Mathematiker Ove Frank zurückgeht. Es formuliert eine elementare stochastische Ungleichung für gewisse endliche Familien von integrierbaren reellen Zufallsvariablen und erweist sich damit als nützliches Hilfsmittel für den Beweis einiger Resultate im Umfeld des Gesetzes der großen Zahlen. Mit Hilfe des Lemmas von Frank lassen sich nicht zuletzt die kolmogoroffsche Ungleichung und die tschebyscheffsche Ungleichung herleiten.[33]
Formulierung des Lemmas
[Bearbeiten | Quelltext bearbeiten]Der Darstellung von Heinz Bauer folgend lässt sich das Lemma angeben wie folgt:[33]
- Gegeben seien ein Wahrscheinlichkeitsraum und darauf endlich viele -integrierbare Zufallsvariable
- mit und .
- Sei weiterhin eine reelle Zahl gegeben und hierbei für
- gesetzt.
- Dann gilt:
- .
Folgerung: Die Ungleichung von Hájek und Rényi
[Bearbeiten | Quelltext bearbeiten]Mit dem Lemma von Frank lässt sich eine von Jaroslav Hájek und Alfréd Rényi vorgelegte Ungleichung herleiten, welche ihrerseits weitere Ungleichungen und insbesondere sowohl die die kolmogoroffsche als auch die tschebyscheffsche Ungleichung in sich einschließt.
Die Ungleichung lautet gemäß der Darstellung von Heinz Bauer wie folgt:[33]
- Seien auf dem Wahrscheinlichkeitsraum endlich viele unabhängige integrierbare reelle Zufallsvariablen gegeben
- und dazu absteigend angeordnete positive Zahlen .
- Sei hierbei für
- [51]
- gesetzt.
- Dann ist für jeden Index und für jedes reelle
- die Ungleichung
- erfüllt.
Quellen und Hintergrundliteratur
[Bearbeiten | Quelltext bearbeiten]- Heinz Bauer: Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie (= De Gruyter Lehrbuch). 3., neubearbeitete Auflage. de Gruyter, Berlin (u. a.) 1978, ISBN 3-11-007698-5. MR0936419
- Ove Frank: Generalization of an inequality of Hájek and Rényi. In: Skand. Aktuarietidskrift. Band 49, 1966, S. 85–89. MR0231420
- J. Hájek, A. Rényi: Generalization of an inequality of Kolmogorov. In: Acta Mathematica Academiae Scientiarum Hungaricae. Band 6, 1955, S. 281–283. MR0076207
Einzelnachweise und Fußnoten
[Bearbeiten | Quelltext bearbeiten]Kreferences /> KKKategorie:Stochastik]] KKKategorie:Wahrscheinlichkeitsrechnung]] KKKategorie:Satz (Mathematik)|Frank, Lemma von]] KKKategorie:Ungleichung]]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Einzelnachweise und Fußnoten
[Bearbeiten | Quelltext bearbeiten]<references>
Einzelnachweise und Fußnoten
[Bearbeiten | Quelltext bearbeiten]- ↑ A. N. Širjaev: Wahrscheinlichkeit. 1988, S. 388–391
- ↑ a b Lexikon der Mathematik in sechs Bänden. Dritter Band. Inp bis Mon. 2001, S. 276
- ↑ Širjaev, op. cit., S. 391
- ↑ Širjaev, op. cit., S. 388
- ↑ M. Loève: Probability Theory I. 1977, S. 259–260
- ↑ R. G. Laha, V. K. Rohatgi: Probability Theory. 1979, S. 98–99
- ↑ R. G. Laha, V. K. Rohatgi: Probability Theory. 1979, S. 465
- ↑ A. I. Sakhanenko: On Lévy–Kolmogorov Inequalities for Banach-Space-Valued Random Variables. In: Theory of Probability & Its Applications. 29, S. 830–836
- ↑ Selecta Mathematica. IV (Hrsg. Konrad Jacobs) 1972, S. 46–56
- ↑ Mark Pollicot, Michiko Yuri: Dynamical Systems and Ergodic Theory. 1998, S. 91–97
- ↑ Selecta Mathematica. IV, S. 49
- ↑ Pollicot/Yuri, op. cit., S. 92
- ↑ P. Gänssler, W. Stute: Wahrscheinlichkeitstheorie. 1977, S. 337-338
- ↑ R. G. Laha, V. K. Rohatgi: Probability Theory. 1979, S. 452-454
- ↑ Pál Révész: Die Gesetze der grossen Zahlen. 1968, S. 146-147
- ↑ P. Gänssler, W. Stute: Wahrscheinlichkeitstheorie. 1977, S. 335
- ↑ R. G. Laha, V. K. Rohatgi: Probability Theory. 1979, S. 447
- ↑ P. Gänssler, W. Stute: Wahrscheinlichkeitstheorie. 1977, S. 336
- ↑ R. G. Laha, V. K. Rohatgi: Probability Theory. 1979, S. 455
- ↑ Hier ist die auf dem Hilbertraum durch das Skalarprodukt erzeugte Norm.
- ↑ Christian Hesse: Wahrscheinlichkeitstheorie 2009, S. 184
- ↑ Für eine reelle Zufallsvariable wird mit deren Erwartungswert bezeichnet.
- ↑ Für eine reelle Zufallsvariable wird mit deren Varianz bezeichnet.
- ↑ Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2009, S. 288-289
- ↑ Für eine reelle Zufallsvariable wird mit deren Erwartungswert bezeichnet.
- ↑ Für eine reelle Zufallsvariable wird mit deren Varianz bezeichnet.
- ↑ a b c d A. N. Širjaev: Wahrscheinlichkeit. 1988, S. 204 Referenzfehler: Ungültiges
<ref>
-Tag. Der Name „ANS“ wurde mehrere Male mit einem unterschiedlichen Inhalt definiert. - ↑ a b c Marek Fisz: Wahrscheinlichkeitsrechnung und mathematische Statistik. 1976, S. 100-101 Referenzfehler: Ungültiges
<ref>
-Tag. Der Name „MF“ wurde mehrere Male mit einem unterschiedlichen Inhalt definiert. - ↑ J. V. Uspensky: Introduction to Mathematical Probability. 1937, S. 265
- ↑ M. Loève: Probability Theory I. 1977, S. 174
- ↑ Harald Cramér: Mathematical Methods of Statistics. 1966, S. 255
- ↑ Für eine reelle Zufallsvariable wird mit deren Erwartungswert bezeichnet.
- ↑ a b c d e f Heinz Bauer: Wahrscheinlichkeitstheorie. 2002, S. 107-113 Referenzfehler: Ungültiges
<ref>
-Tag. Der Name „HB“ wurde mehrere Male mit einem unterschiedlichen Inhalt definiert. - ↑ Mit wird die reelle Betragsfunktion bezeichnet.
- ↑ J. Hoffmann-Jørgensen: Probability with a View toward Statistics. 1994, S. 472-473
- ↑ Oleg Klesov: Limit Theorems for Multi-Indexed Sums of Random Variables. 2014, S. 30-31
- ↑ Michel Ledoux, Michel Talagrand: Probability in Banach Spaces. 1991, S. 151-152
- ↑ B. W. Gnedenko: Einführung in die Wahrscheinlichkeitstheorie 1980, S. 185 ff
- ↑ a b Achim Klenke: Wahrscheinlichkeitstheorie. 2013, S. 117 ff Referenzfehler: Ungültiges
<ref>
-Tag. Der Name „AK“ wurde mehrere Male mit einem unterschiedlichen Inhalt definiert. - ↑ Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie: Eine Einführung. 2014, S. 262 ff
- ↑ Klaus D. Schmidt: Maß und Wahrscheinlichkeit. 2009, S. 353 ff
- ↑ Walter Vogel: Wahrscheinlichkeitstheorie. 1970, S. 318 ff
- ↑ Mit wird die charakteristische Funktion bezeichnet.
- ↑ Dabei steht für das Supremum.
- ↑ Flemming Topsøe: On the Glivenko-Cantelli theorem. in: Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 14 , S. 239 ff
- ↑ Norbert Kusolitsch: Maß- und Wahrscheinlichkeitstheorie: Eine Einführung. 2014, S. 34-35
- ↑ Krishna B. Athreya, Soumendra N. Lahiri: Measure Theory and Probability Theory. 2006, S. 249 ff
- ↑ Kai Lai Chung: A Course in Probability Theory. 2001, S. 125 ff
- ↑ A. Kolmogoroff: Grundbegriffe der Wahrscheinlichkeitsrechnung. 1973, S. 59-60
- ↑ Für eine integrierbare reelle Zufallsvariable wird mit der Erwartungswert von und mit die Varianz von bezeichnet.
- ↑ Für eine integrierbare reelle Zufallsvariable ist der Erwartungswert von .
- ↑ Für eine integrierbare reelle Zufallsvariable ist die Varianz von .
- ↑ Eine Summe der Form wird als Summe über die leere Menge und damit gleich Null betrachtet.
Anmerkungen
[Bearbeiten | Quelltext bearbeiten]- ↑ Hier ist dann selbstverständlich gesetzt.
- ↑ Dies ist die spezielle Version, die zum Beweis des Gesetzes vom iterierten Logarithmus für Summen von Zufallsvariablen benötigt wird.
- ↑ Diese beiden sind mit der zuvor formulierten Lévy-Ungleichung offenbar eng verwandt.
- ↑ Mit ist die reelle Betragsfunktion gemeint.