Diskrete lineare L1-Approximation
Bei der diskreten linearen l1-Approximation wird in der Mathematik eine vorgegebene reellwertige Funktion durch einfachere stetige Funktionen in diskreten Punkten bezüglich der l1-Norm angenähert.
Problemstellung
[Bearbeiten | Quelltext bearbeiten]Gegeben seien
- eine feste endliche Menge , die in einem reellen Intervall liegt
- eine reellwertige Funktion , die auf definiert ist:
- stetige reellwertige Funktionen mit , die auf dem Intervall definiert sind.
Die Funktion soll auf der Menge im Sinne der l1-Norm möglichst gut durch eine Linearkombination der stetigen Funktionen approximiert werden. Das heißt, unter den Vektoren wird derjenige Vektor gesucht, für den gilt:
mit
und
Zugrunde liegt die l1-Norm, ein Spezialfall der lp-Norm mit , die auch unter dem Namen Betragssummennorm bekannt ist:
Es wird also die Summe der Fehlerbeträge in den einzelnen Punkten minimiert.
Formulierung als lineares Optimierungsproblem
[Bearbeiten | Quelltext bearbeiten]Durch geeignete Umformulierung lässt sich das Problem als lineares Optimierungsproblem darstellen und mit den entsprechenden Methoden, etwa dem Simplex-Verfahren, lösen.
Mit den Abkürzungen
lässt sich das Problem schreiben als:
- Minimiere
- unter den Nebenbedingungen
- für und
Um das Problem mit der Simplexmethode lösen zu können, muss noch die Zielfunktion linearisiert werden. Dazu setzt man
- für
mit und erhält schließlich ein lineares Optimierungsproblem, das mit dem Simplex-Verfahren gelöst werden kann:
- Minimiere
- unter den Nebenbedingungen
- für
- freie Variable für
Nicht-Eindeutigkeit von Lösungen
[Bearbeiten | Quelltext bearbeiten]Die Lösung ist nicht immer eindeutig, wie das folgende Beispiel zeigt:
- Sei , also
- und also
- Dann ist jede Funktion mit eine beste Approximation, es gibt also beliebig viele Lösungen.
Nutzen der l1 Approximation
[Bearbeiten | Quelltext bearbeiten]Ian Barrodale beobachtete in L1-approximation and the analysis of data (siehe Literatur) folgende Eigenschaft: Treten in einer Messreihe in wenigen der Messwerte große Messfehler auf, dann werden diese schlechten Werte in vielen Fällen von einer optimalen Lösung der l1 Approximation erkannt und ignoriert. Das heißt, an diesen Stellen ergibt sich im Verhältnis zu den "fast richtigen" Werten ein wesentlich größerer Fehler
Dagegen fallen solche "großen Messfehler" etwa bei einer l2 Approximation oder einer l∞ Approximation nicht auf und verschlechtern die gesamte Lösung. Daher empfiehlt Barrodale, zunächst mittels einer l1 Approximation die schlechten Werte ("wild points") zu erkennen und diese dann fortzulassen oder durch bessere Werte zu ersetzen. Danach könnte eine Approximation in der gewünschten Norm erfolgen.
Literatur
[Bearbeiten | Quelltext bearbeiten]- Nabih N. Abdelmalek: Linear l1-approximation for a discrete point set and l1-solutions of overdetermined linear equations., Journal of the ACM 18 (1971), S. 41–47
- Nabih N. Abdelmalek: On the discrete linear l1-approximation and l1-solutions of overdetermined linear equations., Journal of Approximation Theory 11 (1974), S. 38–53
- Nabih N. Abdelmalek: An efficient method for the discrete linear l1-approximation problem., Mathematics of Computation 29 (1975) S. 844–855
- Ian Barrodale: Approximation in l1 and l∞ norms by linear programming., Ph.D.thesis, University of Liverpool, 1967
- Ian Barrodale: L1-approximation and the analysis of data., Applied Statistics 17 (1968), S. 51–57
- Ian Barrodale: On computing best l1 approximations, Approximation Theory (A. Talbot, Editor), Academic Press 1970, S. 205–215
- Ian Barrodale, Frank D.K. Roberts: Applications of mathematical programming to lp approximation, Nonlinear Programming (J.B. Rosen, O.L. Mangasarian, K. Ritter, Editors), Academic Press 1970, S. 447–464
- Ian Barrodale, Frank D.K. Roberts: An improved algorithm for discrete linear l1-approximation., University of Wisconsin, MRC Report No. 1172, 1970
- Ian Barrodale, Andrew Young: Algorithms for best l1 and l∞ linear approximations on a discrete set, Numerische Mathematik 8 (1966), S. 295–306
- G. Croucher: Best l1 and l∞ linear approximations on a discrete set, 1971, M.Sc. thesis, Birkbeck College, London University
- P.D. Robers, A. Ben-Israel: An interval programming algorithm for discrete linear l1-approximation problems., Journal of Approximation Theory 2 (1969), S. 323–326
- Karl H. Usow: On l1 approximation II: Computation for discrete functions and discretisation effects., SIAM Journal Numerical Analysis 4 (1967), S. 233–244
Weblinks
[Bearbeiten | Quelltext bearbeiten]- K. Spyropuolos, E. Kiountouzis, A.Young: Discrete approximation in the L1 norm, The Computer Journal 16 (1972) S.180-186 (abgerufen am 28. Dezember 2011; PDF; 3,9 MB)