Elektromobilität

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von E-Mobilität)
Zur Navigation springen Zur Suche springen
Elektroautos in Berlin
Straßenbahn in Basel
Batteriebus an einer Ladestation
Elektrofahrrad der Deutschen Post
Elektrolastkraftwagen e-Force One
Elektromotorroller
Bereits seit 1909 fahren solche Elektroschiffe auf dem Königssee (Bayern).
Elektroflugzeuge mit Typzulassung seit 2020
Elektrolokomotive
Ein Solaris Trollino 18 (Nr. 303) des Obus-Systems Salzburg.
Tesla Semi

Elektromobilität beschreibt die Beförderung von Personen und Gütern mithilfe elektrischer Antriebe. Dabei ist die Stromversorgung über Kabel, insbesondere über Oberleitungen bei Bahnen, seit ca. 100 Jahren etabliert, die Mobilität jedoch eingeschränkt. Fahrzeuge, die das „Kraftwerk“ an Bord haben, wie Dieselelektrische Lokomotiven oder Hybridelektrokraftfahrzeuge, werden aufgrund der lokalen Emissionen nicht als vollwertig elektromobil betrachtet. Als möglichst lautlose und abgasfreie Energiespeicher wurden Bleibatterien auf Bleibasis, Druckluftspeicher, Schwungradspeicher u. ä. ausprobiert, aber erst der Lithium-Ionen-Akkumulator konnte zunächst Unterhaltungselektronik (1990er Jahre) und dann auch PKW kommerziell erfolgreich rein elektrisch antreiben.

Die Elektromobilität gilt als zentraler Baustein eines nachhaltigen und klimaschonenden Verkehrssystems auf Basis erneuerbarer Energien,[1] wie es mit der Verkehrswende angestrebt wird. Gemäß Weltklimarat IPCC besitzen Fahrzeuge mit elektrischem Antrieb, die mit Strom aus emissionsarmen Quellen angetrieben werden, über ihren gesamten Lebenszyklus das größte Klimaschutzpotential aller landgebundenen Transporttechnologien.[2] Mit dem russischen Überfall auf die Ukraine gewann zudem die sich durch Umstieg auf Elektromobilität ergebende Stärkung der Energiesicherheit an Bedeutung in Europa.[3]

Bei den spurgeführten Verkehrssystemen konnten sich schon seit Ende des 19. Jahrhunderts zahlreiche elektrische Systeme etablieren, die in den meisten Fällen über eine Infrastruktur von Stromschienen oder Oberleitungen mit elektrischer Energie versorgt werden.[4] Zahlreiche Baureihen von Elektrolokomotiven und elektrischen Triebwagen führten zu einer heute weit fortgeschrittenen Technologie der elektrischen Traktion. Auch unabhängig vom Elektronetz kann mit dieselelektrischen Lokomotiven oder Akkumulatortriebwagen schon vielfach die Effizienz der Hybrid-Technologie genutzt werden.

Weltweit wurden von 2013 bis Ende 2022 über 19 Mio. Elektroautos (BEV) verkauft (71 % von 26,8 Mio. PHEV u. BEV).[5] Bezogen auf den Weltgesamtfahrzeugbestand 2022 von über 1,5 Milliarden Fahrzeugen entspricht das einem Anteil von ungefähr 1,3 Prozent.[5]

Batteriebusse sind mittlerweile in großer Zahl im Einsatz und ersetzen zunehmend Busse mit Dieselmotor insbesondere in Ballungszentren. Auch Reisebusse gibt es rein elektrisch wie beispielsweise den BYD C9 oder vom Hersteller Yutong.

Elektrolastkraftwagen

[Bearbeiten | Quelltext bearbeiten]

Elektrolastwagen sind bereits in großer Zahl im Einsatz. Beispiele sind der Tesla Semi und die eActros von Mercedes-Benz.

Rein elektrisch angetriebene zweirädrige Kleinfahrzeuge

[Bearbeiten | Quelltext bearbeiten]
Elektromotorrad Harley-Davidson LiveWire

Elektroräder (auch Pedelec genannt) haben seit Beginn der 2010er Jahre hohe Zuwachsraten.

Elektromotorroller und Elektromotorräder

[Bearbeiten | Quelltext bearbeiten]

Auch verschiedene elektrisch angetriebene Kleinkrafträder wie Elektromotorroller (s. Liste der Elektromotorroller) oder Elektromotorräder sind erhältlich.

E-Tretroller oder E-Scooter

[Bearbeiten | Quelltext bearbeiten]
Leih-E-Scooter in Köln

Seit den 2010er Jahren haben sich die Elektro-Tretroller, auch E-Scooter genannt, etabliert. Diese haben sich im 21. Jahrhundert fast explosionsartig in vielen Ländern verbreitet. Sie gelten als Bindeglied zwischen Fahrzeugen mit längeren Reichweiten und den Hilfen für die letzte Meile.

Zu Beginn der 2020er Jahre kamen aus den USA rein elektrisch angetriebene Minifahrräder in die Stadt. Der erste Hersteller Wheels produziert die nur 20 kg schweren handlichen Räder ohne Pedale, aber mit festem kleinem Sattel. Diese werden wie viele ähnliche Stadtfahrzeuge zur freien Ausleihe angeboten. Seit März 2020 können Interessenten die Wheels auf dem EUREF-Campus in Berlin-Schöneberg zu Probefahrten gratis ausleihen. Wie bei den E-Bike-Sharing-Unternehmen oder den E-Tretroller-Anbietern muss zuvor eine App auf dem Handy installiert werden, mit deren Aktivierung dann die Fahrt freigegeben wird.[6]

Verfügbar sind die Wheels bereits in elf Städten der USA, in Basel, in Stockholm und in Madrid. Ausgestattet sind die rund 20 km/h-schnellen E-Miniräder mit einer Scheibenbremse und Beleuchtung; Gepäckkörbe o. ä. sind (noch) nicht in Verwendung. Sie sollen vor allem den E-Scootern Konkurrenz machen, da sie für die Nutzer sicherer zu handhaben sind.[6]

Volocopter 2X

Mit dem Ultraleichtflugzeug Pipistrel Velis Electro hat 2020 weltweit das erste vollelektrische Flugzeug eine Typzulassung erhalten.

Durch Elektromotoren und moderne Akkus wurden Multicopter (siehe eVTOL) mehr verbreitet. Diese sind beispielsweise als autonome Flugtaxis in der Erprobung oder als Drohnen im Einsatz. Beispiele dafür sind Volocopter, Lilium Jet, EHang, CityAirbus, Boeing Passenger Air Vehicle.

Elektroboote und -schiffe

[Bearbeiten | Quelltext bearbeiten]
Ampere Elektro Fähre in Norwegen
Elektra Elektro Fähre in Finnland

Elektrische Ausflugsschiffe fahren zum Beispiel seit 1909 auf dem Königssee in Bayern. Seit 2015 ist die elektrische Fähre Ampere in Norwegen in Betrieb. Seitdem verkehren in Norwegens Schärengewässer zunehmend akkubetrieben Fährschiffe. Seit 2017 verkehrt in Finnland die erste Elektrofähre Elektra.

Oberleitungsbus

[Bearbeiten | Quelltext bearbeiten]

Ein Oberleitungsbus ist ein elektrisches Verkehrsmittel beziehungsweise Verkehrssystem im öffentlichen Personennahverkehr. Er ist wie ein im Stadtbusverkehr eingesetzter Stadtlinienbus aufgebaut, wird im Gegensatz zu diesem aber nicht von einem Verbrennungsmotor, sondern von einem oder mehreren Elektromotoren angetrieben. Die ersten Anlagen wurden zu Beginn des 20. Jahrhunderts eröffnet, weltweit existierten Ende des Jahres 2021 insgesamt 272[7] Oberleitungsbus-Betriebe in 47 Staaten.

Sonstige Fahrzeuge

[Bearbeiten | Quelltext bearbeiten]

Ebenso gibt es schon seit dem beginnenden 20. Jahrhundert Oberleitungslastkraftwagen und Gyrobusse.

Zulassungen in Deutschland

[Bearbeiten | Quelltext bearbeiten]

In der Zulassungsstatistik des deutschen Kraftfahrt-Bundesamts werden nur Kraftfahrzeuge gemäß den EG-Vorschriften bzw. der Systematik der Straßenfahrzeuge nach DIN 70010 berücksichtigt, so dass u. a. Leichtkraftfahrzeuge mit reduzierter Geschwindigkeit und dreirädrige Kraftfahrzeuge (max. 45 km/h) wie CityEL, Sam sowie das Twike (max. 85 km/h) (s. a. Leichtelektromobil) oder der Renault Twizy nicht in der deutschen Pkw-Zulassungsstatistik auftauchen.

Potenziale und Probleme

[Bearbeiten | Quelltext bearbeiten]

Vor- und Nachteile von Elektrofahrzeugen

[Bearbeiten | Quelltext bearbeiten]

Primärer Vorteil von Elektrofahrzeugen gegenüber Verbrennerfahrzeugen ist die lokale Abgas-Emissionsfreiheit. Für eine ganzheitliche Lebenszyklusanalyse sind dagegen zahlreiche weitere Emissionen und Verbräuche zu berücksichtigen, zum Beispiel neben denen der Energieerzeugung und -bereitstellung (Graue Energie) diejenigen der Produktherstellung und -Entsorgung. Die maximale Emissionsreduzierung ist dabei an die Verwendung von erneuerbaren Energiequellen gebunden. Allerdings bewirken batterieelektrische Fahrzeuge bereits bei Nutzung des durchschnittlichen europäischen Strommix einen bei weitem geringeren Ausstoß von Kohlenstoffdioxid als herkömmliche Fahrzeuge mit Verbrennungsmotor. Nach einer Studie 2015 lagen dann die Treibhausgas-Ersparnisse bei 44 bis 56 % in der einfachen Well-to-Wheel-Betrachtung bzw. 31 bis 46 % mit Herstellung des Batteriepacks.[8] Elektrofahrzeuge emittieren demnach für den Fahrbetrieb weniger Kohlenstoffdioxid, bei ihrer Herstellung jedoch mehr. Eine 2010 veröffentlichte Studie des interdisziplinären EMPA-Forschungsinstituts des Bereichs Materialwissenschaften und Technologie der Eidgenössischen Technischen Hochschule Zürich (ETH) kam zu dem Ergebnis, dass bei Elektroautos etwa 15 % der gesamten Umwelteinflüsse auf die Herstellung der Akkumulatoren entfallen[9] (siehe Umweltbilanz von Elektroautos).

Neben der lokalen Abgas-Emissionsfreiheit des Elektroantriebs haben Elektrofahrzeuge weitere kunden- und umweltrelevante Vorteile:

  • Elektroautos sind in Gebieten geringer Geschwindigkeit (zum Beispiel Wohngebieten) oder beim Anfahren an Kreuzungen und Ampeln für die Umwelt deutlich leiser. Busse, Räum- oder Müllfahrzeuge mit Elektroantrieb sind im gesamten Geschwindigkeitsspektrum des Stadtverkehrs deutlich leiser. Dasselbe gilt für Mofas, Mopeds und Motorräder.[10]
  • Elektromagnetische Nutzbremsung, und dadurch weniger Emissionen durch Feinstaub aus Bremsbelägen.
  • Energierückgewinnung durch die Möglichkeit der Rekuperation.
  • Höherer Fahrkomfort durch leiseren (innen und außen) und vibrationsarmen Antriebsstrang; keine Schaltvorgänge.
  • Besseres Verhältnis von Innenraum zu Fahrzeuggröße (bei Fahrzeugen, die als Elektrofahrzeug konzipiert wurden).
  • Hohes Drehmoment des Motors aus dem Stand.
  • Kein Verbrauchskosten bei stehendem Fahrzeug.
  • Geringere Verbrauchskosten beim Laden zu Hause (siehe auch Wirtschaftlichkeit des Elektroautos).[11]
  • Höhere Lebensdauer / geringere Wartungskosten des verschleißarmen Antriebs.
  • Möglichkeit der Integration des Fahrzeugs in die Energieinfrastruktur (Vehicle to Grid).[12]
  • Geringere Kraftfahrzeugbesteuerung von Elektrofahrzeugen in einigen Staaten (in Deutschland zeitlich begrenzt).

Demgegenüber können sich jedoch auch kunden- und umweltrelevante Nachteile von Elektrofahrzeugen ergeben:

  • Höherer Anschaffungspreis, jedoch vermindert sich dieser Nachteil inzwischen (bspw. Model 3 ist billiger als ein vergleichbares Fahrzeug mit Verbrennungsmotor)
  • Geringere Reichweite
  • Zeitaufwand für das Aufladen der Fahrzeugbatterien bei Fernfahrten im Vergleich zu der Betankung von Fahrzeugen mit Diesel-, Benzin- oder Erdgasmotoren
  • Beschränktes Angebot an Ladestationen
  • Fehlen von Service-Infrastruktur (Werkstätten) in Teilen der Welt, insbesondere in Entwicklungsländern

Zu Antriebsbatterien ist bekannt, dass Fahrzeugbrände mit Beteiligung der Batterien vorkommen können und schwierig zu bekämpfen sind. Anfang der 2010er Jahre wurde in mehreren technischen Gutachten auf diese Gefahren hingewiesen. Neben der Gefahr für die Fahrzeuginsassen ist seitdem das Problem zur Brandbekämpfung durch die Feuerwehr bekannt.[13] Auch Pannendienste stehen vor neuen Herausforderungen, da z. B. für den Abtransport ein spezieller Kühlcontainer benötigt wird.[14]

Ein weiterer wichtiger Aspekt ist die Sicherheit von anderen Verkehrsteilnehmern. Bei niedrigen Geschwindigkeiten sind Elektrofahrzeuge so geräuscharm, dass Fußgänger und Radfahrer sie leicht überhören können. Daher schreibt die EU seit 2014 vor, dass neue Elektro- und Hybrid-Kraftfahrzeuge mit einem Acoustic Vehicle Alerting System (AVAS) ausgestattet sein müssen. Dieses System erzeugt bis zu einer Geschwindigkeit von 20 km/h Geräusche, die denen von Benzin- oder Dieselfahrzeugen ähneln. Bei höheren Geschwindigkeiten wird das Rollgeräusch der Reifen hörbar.[15]

Energiespeicher

[Bearbeiten | Quelltext bearbeiten]

Als Energiespeicher haben sich bis 2023 vor allem Lithium-Ionen-Akkumulatoren der Typen Nickel-Mangan-Cobalt (NMC) und Lithium-Eisenphosphat (LFP) durchgesetzt.

In jüngster Zeit wurden große Fortschritte in der Akkumulatorentechnik erzielt, insbesondere bei den Kosten der Akkus. Mit einer Verdopplung der Produktion sinken die Akkupreise um ca. 6–9 %. Lagen die Kosten 2007 noch bei mehr als 1000 $/kWh, konnten große Elektroautohersteller im Jahr 2014 ihre Akkus bereits zu Kosten von ca. 300 $/kWh kaufen. Es wird davon ausgegangen, dass Elektroautos ab Akkukosten von ca. 150 $/kWh wirtschaftlich mit herkömmlichen Autos mit Verbrennungsmotor konkurrieren können.[16] Im Juli 2024 lag der Preis für Lithium-Eisen-Phosphat-Akkumulatoren in China bei 53 USD pro kWh. Dadurch sind zu diesem Zeitpunkt 2/3 der Elektroautos in China, dem weltweit größten Automarkt, günstiger als vergleichbare Autos mit Verbrennungsmotor.[17] Ebenso haben Zyklenfestigkeit und Lebensdauer so zugenommen, dass die Akkus heute für ein Autoleben ausreichen. Aufgrund des vorrangig mit der Elektromobilität in Verbindung stehenden Anstiegs der Nachfrage nach Lithium stehen Fortschritten in der Akkumulatorentechnik jedoch zunehmend Preisanstiege bei den Rohstoffen entgegen, so hat sich der Lithium-Preis innerhalb eines Jahres (Stand September 2017) verdoppelt.[18] Gleichzeitig ist die erhebliche Steigerung des Lithiumabbaus im Zuge des erhöhten Bedarfs an Lithium-Ionen-Akkumulatoren mit negativen Auswirkungen auf die Umwelt in den Ländern der Rohstoffgewinnung verbunden.[19] Als preisgünstige und umweltfreundliche Alternative werden immer häufiger Natrium-Ionen-Akkumulatoren genutzt.

Alternativ werden immer wieder Brennstoffzellen als Energiewandler angeführt. Diese weisen durch die mehrfache Energieumwandlung deutlich schlechtere Wirkungsgrade als Akkumulatoren auf, doch kann der verwendete Wasserstoff in wenigen Minuten nachgetankt werden. Toyota hat mit dem Mirai bereits seit 2014 ein solches Fahrzeug auf dem Markt. Aktuell hat kein deutscher Hersteller (Stand 2021) ein Brennstoffzellenauto im Angebot.

Ladeinfrastruktur

[Bearbeiten | Quelltext bearbeiten]
Renault Zoe lädt an einer privaten Wandladestation
Smart lädt an einer öffentlichen Wechselstrom-Ladesäule
VW ID.3 lädt an einer Gleichstrom-Schnellladesäule

Der Ausbau der Ladeinfrastruktur wird als wichtiges Instrument zur Förderung der Elektromobilität angesehen.[20]

In Europa wurde das Typ-2-Stecksystem für Wechselstrom standardisiert. Um für Schnellladung per Gleichstrom im Auto keine zweite Steckdose zu benötigen, wurde das kombinierte System Combined Charging System (CCS) entwickelt. Die technischen Vorgaben neu zu errichtender öffentlicher Ladepunkte wird in Deutschland seit März 2016 durch die Ladesäulenverordnung reguliert.

Praktisch alle Elektroautos können über eine In-Kabel-Kontrollbox an einer Haushaltssteckdose aufgeladen werden. Da jedoch nur die wenigsten haushaltsüblichen Steckdosen für dauerhafte hohe Ströme ausgelegt sind,[21] bieten die Fahrzeughersteller und externe Dienstleister an, Wandladestationen, sogenannte „Wallboxen“ mit dem Verkauf des Fahrzeugs beim Kunden zu installieren.[22] Seit vielen Jahren gibt es das ursprünglich in der Schweiz entstandene „Park & Charge“-System der öffentlichen Ladestationen für Solar- und E-Mobile. Die Tankstellen sind über einen europaweit einheitlichen Schlüssel zugänglich und liefern je nach Ausführung und Absicherung standardmäßig 3,5 kW oder 10 kW. Ähnlich angelegt sind die Ladehalte der Drehstromnetz-Initiative.[23]

Abgesehen von verschiedenen technischen Restriktionen in der Akkutechnik ist die Ladegeschwindigkeit vor allem von der Leistung des Ladegerätes abhängig. Während der Ladevorgang bei einem herkömmlichen Haushaltsanschluss mit 3,3 kW bei einem Elektrofahrzeug mit einer Batterie von etwa 20 kWh ca. 6–8 Stunden dauert, so reduziert ein 11-kW-Anschluss die Ladezeit auf ca. 2 Stunden. Deutlich schnellere Ladezeiten sind mit Schnellladeeinrichtungen möglich: Bei 50 und mehr kW ist ein Elektrofahrzeug meist in ca. 30 Minuten für eine Weiterfahrt ausreichend mit ca. 80 % geladen.

Das Unternehmen Tesla, Inc. betreibt mit den Superchargern ein eigenes Schnellladenetzwerk. Anfangs war es nur von Tesla-Fahrzeugen nutzbar und nutze den Typ-2-Stecker. Seit 2019 werden die Ladestationen in Europa auf den CCS-Stecker umgestellt. 2021 startete die Öffnung einzelner Standorte für Fremdmarken.

Für kleinere und mittelständische Unternehmen (KMU), die ihre Ladeinfrastruktur Mitarbeitern und Kunden zur Verfügung stellen möchten, bieten sich Wallboxen mit Lade- und Abrechnungssoftware an, die die Gesetze des Mess- und Eichrechts erfüllen und somit eine einheitliche und exakte Erfassung des geladenen Stroms ermöglichen.

Initiativen und Förderprogramme

[Bearbeiten | Quelltext bearbeiten]

Seit Juli 2022 gibt es mit Car Maniac bei Sport1 ein erstes TV-Magazin speziell zur Elektromobilität im deutschen Fernsehen.[24]

  • Nadine Appelhans, Jürgen Gies, Anne Klein-Hitpaß (Hrsg.): Elektromobilität: im Spannungsfeld technologischer Innovation, kommunaler Planung und gesellschaftlicher Akzeptanz. [Difu-Impulse Bd. 1] Deutsches Institut für Urbanistik, Berlin 2016, ISBN 978-3-88118-544-8.
  • Achim Brunnengräber, Tobias Haas (Hrsg.): Baustelle Elektromobilität. Sozialwissenschaftliche Perspektiven auf die Transformation der (Auto-)Mobilität. transcript, Bielefeld 2020, ISBN 978-3-8376-5165-2 (zum Download; PDF; 2,94 MB).
  • Martin Doppelbauer: Grundlagen der Elektromobilität: Technik, Praxis, Energie und Umwelt. Springer Vieweg, Berlin 2020, ISBN 978-3-658-29729-9.
  • Achim Kampker, Dirk Vallée, Armin Schnettler (Hrsg.): Elektromobilität: Grundlagen einer Zukunftstechnologie. 2. Auflage. Springer Vieweg, Berlin / Heidelberg 2018, ISBN 978-3-662-53136-5.
  • Oliver Schwedes, Marcus Keichel (Hrsg.): Das Elektroauto. Mobilität im Umbruch. Wiesbaden 2021, ISBN 978-3-658-32741-5.
  • Volker Christian Manz, Halwart Schrader: Alternativ mobil. Von 1881 bis morgen. Georg Olms Verlag, 2022, ISBN 978-3-487-08650-7.
Commons: Electrically-powered transport – Sammlung von Bildern, Videos und Audiodateien
Wiktionary: Elektromobilität – Bedeutungserklärungen, Wortherkunft, Synonyme, Übersetzungen

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Michael Sterner, Ingo Stadler: Energiespeicher – Bedarf, Technologien, Integration. Berlin / Heidelberg 2014, S. 151.
  2. Jim Skea et al.: Climate Change 2022: Mitigation of Climate Change. Summary for Policymakers (Memento vom 7. August 2022 im Internet Archive) (PDF; 5,1 MB) Sechster Sachstandsbericht des IPCC, 2022; abgerufen am 21. April 2022.
  3. Nicola Armaroli et al.: The road ahead: how to reduce emissions and energy use for Italy’s transport sector. In: Nature Italy. 2022, doi:10.1038/d43978-022-00098-x.
  4. Jean-Luc Rickenbacher: Kurze Geschichte der Elektromobilität. In: Blog des Schweizerischen Nationalmuseums. 17. Juni 2022, abgerufen am 25. Juni 2022.
  5. a b Torsten Seibt: Elektroautos Verkaufszahlen (2022) weltweit - Tesla ist mit Riesen-Abstand Weltmarktführer. In: auto motor und sport. Motor Presse Stuttgart GmbH & Co. KG, 24. Februar 2023, archiviert vom Original am 9. März 2023; abgerufen am 14. März 2023.
  6. a b Minifahrräder ohne Pedale. In: Berliner Zeitung, 12. März 2020, S. 10.
  7. Jürgen Lehmann: Knapp 5000 Trolleybusse fahren in der EU in 89 Betrieben auf trolleymotion.eu, Artikel vom 31. Dezember 2021, abgerufen am 18. Februar 2022
  8. Alberto Moro, Eckard Helmers: A new hybrid method for reducing the gap between WTW and LCA in the carbon footprint assessment of electric vehicles. In: The International Journal of Life Cycle Assessment (2015), doi:10.1007/s11367-015-0954-z.
  9. Dominic A. Notter u. a.: Contribution of Li-Ion Batteries to the Environmental Impact of Electric Vehicles. In: Environmental Science & Technology. Band 44, 2010, S. 6550–6556, doi:10.1021/es903729a.
  10. Luftschadstoffe und Lärm: Mehr Elektroautos – mehr Lebensqualität? Bundesministerium für Umwelt, Naturschutz und nukleare Sicherheit (BMU), 17. Juli 2020, archiviert vom Original (nicht mehr online verfügbar) am 8. Juni 2021; abgerufen am 8. Juni 2021.  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.bmu.de
  11. Elektromobilität: Das kostet die Tankladung fürs Elektroauto. In: tarife.de. 22. November 2016, archiviert vom Original (nicht mehr online verfügbar) am 5. September 2017; abgerufen am 29. August 2018.  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.tarife.de
  12. Weert Canzler, Andreas Knie, Schlaue Netze. Wie die Energie- und Verkehrswende gelingt. München 2013, ISBN 978-3-86581-440-1, S. 8f.
  13. Marcus Keichel, Oliver Schwedes: Das Elektroauto: Mobilität im Umbruch. Springer-Verlag, 2013, ISBN 978-3-658-00796-6, Seite 139 (Teilvorschau online).
  14. Pannendienste müssen aufrüsten wegen E-Autos. In: 20min.ch. 18. Oktober 2019, abgerufen am 19. Oktober 2019.
  15. Elektromobilität: ermöglicht klimafreundliche Fahrzeuge. In: WGP. Abgerufen am 24. Januar 2024 (deutsch).
  16. Björn Nykvist, Måns Nilsson: Rapidly falling costs of battery packs for electric vehicles. In: Nature Climate Change. Band 5, 2015, S. 329–332, doi:10.1038/NCLIMATE2564.
  17. Colin McKerracher: China’s Batteries Are Now Cheap Enough to Power Huge Shifts. In: bloomberg.com. 9. Juli 2024, abgerufen am 26. Juli 2024 (englisch).
  18. E-Auto-Boom: Batterien-Engpass wegen Lithium-Mangels droht. In: Der Standard. 17. September 2017, abgerufen am 29. August 2018.
  19. Lithiumabbau in Chile: Fluch und Segen des "weißen Goldes" Bericht auf der Internetseite des Nachrichtenfernsehsenders n-tv vom 10. November 2018, abgerufen am 8. Dezember 2018
  20. So funktioniert der Ausbau der Ladeinfrastruktur. In: www.bundesregierung.de. 21. Februar 2023, abgerufen am 9. März 2023.
  21. Warnung vor Unfällen beim Laden von Elektroautos. (Memento des Originals vom 20. Oktober 2011 im Internet Archive)  Info: Der Archivlink wurde automatisch eingesetzt und noch nicht geprüft. Bitte prüfe Original- und Archivlink gemäß Anleitung und entferne dann diesen Hinweis.@1@2Vorlage:Webachiv/IABot/www.strom-magazin.de strom-magazin.de, 15. September 2011.
  22. 360° Electric. E-Mobilität immer und überall. (Memento vom 16. Februar 2013 im Internet Archive) bmw-i.de
  23. Das Netzwerk von und für Elektrofahrer, Drehstromnetz.de; abgerufen am 27. Februar 2012.
  24. Felix Ritter: Sport1 startet "Car Maniac" - erstes Magazin zur E-Mobilität. 22. Juli 2022, abgerufen am 28. Juli 2022.