Kältemittel

aus Wikipedia, der freien Enzyklopädie
(Weitergeleitet von R-407C)
Zur Navigation springen Zur Suche springen

Kältemittel transportieren Enthalpie (Wärmeenergie) von dem Kühlgut zur Umgebung. Der Unterschied zum Kühlmittel ist, dass ein Kältemittel in einem Kältekreis dies entgegen einem Temperaturgradienten tun kann, so dass unter Aufwendung von zugeführter Energie (meist Volumenänderungsarbeit in Form von Kompression) die Umgebungstemperatur sogar höher sein darf als die Temperatur des zu kühlenden Gegenstandes. Dagegen ist ein Kühlmittel lediglich in der Lage, in einem Kühlkreis die Enthalpie entlang des Temperaturgradienten zu einer Stelle niedrigerer Temperatur zu transportieren.

Nach DIN EN 378-1 Abs. 3.7.1 ist das Kältemittel definiert als „Fluid, das zur Wärmeübertragung in einer Kälteanlage eingesetzt wird, und das bei niedriger Temperatur und niedrigem Druck Wärme aufnimmt und bei höherer Temperatur und höherem Druck Wärme abgibt, wobei üblicherweise Zustandsänderungen des Fluids erfolgen.“ bzw. nach DIN 8960 Abs. 3.1 als „Arbeitsmedium, das in einem Kältemaschinenprozess bei niedriger Temperatur und niedrigem Druck Wärme aufnimmt und bei höherer Temperatur und höherem Druck Wärme abgibt.“ Die Definitionen nach DIN beziehen sich auf Kompressions-Kältemaschinen. Als Zustandsänderung im Sinne der Norm ist eine Änderung des Aggregatzustandes gemeint (siehe Kältemaschine).

Kältemittel werden in geschlossenen oder offenen Kälteanlagen als Arbeitsmedium eingesetzt. Während bei Kältemitteln im engeren Sinne die Verdampfungsenthalpie durch Verdampfung bei niedrigem Druck und niedriger Temperatur aufgenommen wird, geschieht dies in einer Kältemischung chemisch durch eine Mischungs- oder Lösungsreaktion.

Ammoniak, Kohlenstoffdioxid und Wasser, aber auch Kohlenwasserstoffe und Luft werden, im Gegensatz zu halogenierten Kohlenwasserstoffen, auch als natürliche Kältemittel bezeichnet. Halogenkohlenwasserstoffe sind Substanzen, die auch in der Natur vorkommen. Sie werden sowohl von Mikroorganismen und Pflanzen als auch infolge vulkanischer Aktivität in nicht unerheblichen Mengen freigesetzt.[1] Natürliche Kältemittel tragen nicht zum Abbau der Ozonschicht bei und haben nur einen vergleichsweise geringen direkten Einfluss auf den Treibhauseffekt.

Historische Entwicklung der Nomenklatur

[Bearbeiten | Quelltext bearbeiten]

Die Entwicklung zur Nomenklatur von Kältemitteln wird dokumentiert in dem Band 3 der Buchserie Advances in Fluorine Chemistry[2]. Sie wurde erstmals von Henne, Midgley und McNary vorgeschlagen. Der genaue Zeitpunkt der Einführung der Nomenklatur dieser drei Wissenschaftler, die alle Mitarbeiter der Firma DuPont gewesen sind[3], wird dabei nicht erwähnt. Ursächlich für deren Einführung war der Wunsch, ihre Studien mit Halogenkohlenwasserstoffen zu vereinfachen. Die Nomenklatur wurde auch durch DuPont selbst genutzt, was letztlich auch zu den bekannten Markennamen mit gleicher Nummerierung für die Kältetechnikindustrie führte. Heutige Markennamen stehen in ihrer Nummerierung nur noch selten in Bezug zu dieser Nomenklatur. Die ersten zwei Jahrzehnte nach der Einführung synthetischer Kältemittel hatte DuPont quasi ein Monopol für synthetische Kältemittel inne. Die Fluorchemie wuchs zu dieser Zeit rasant, einmal durch die Herstellung von Kältemitteln, Lösungsmitteln und Treibmitteln, aber auch durch die kurz nach den Kältemitteln entdeckten Fluorpolymere, insbesondere PTFE, welches eine zentrale Rolle als Dichtungsmaterial in der Uran-Anreicherung im Manhattan-Projekt spielen sollte[4]. Während dieser Zeit wurde die Identifizierung der Verbindungen mit der entsprechenden Codenummer in der Kältetechnikindustrie fest verankert. Infolgedessen sahen es die späteren Hersteller dieser etablierten Produkte als vorteilhaft an, das Nummernsystem des Marktführers DuPont mit dessen Zustimmung in ihre eigenen individuellen Markensysteme zu integrieren. Verbrauchergruppen erkannten natürlich schnell den Vorteil dieser Vereinheitlichung, und durch die Vermittlung von ASHRAE erklärte man sich allgemein bereit, das Nummernsystem ab Juni 1957 zu übernehmen. Bis 1958 firmierte ASHRAE dabei noch als ASRE[5]. Diese Entscheidung wurde später von der ASA, heute ANSI, unter dem Titel ASA/ASRE B79.1 - Numerische Bezeichnung von Kältemitteln im September 1960 genehmigt. Mittlerweile hatten Hersteller weltweit diesen Standard akzeptiert. Im Oktober 1960 empfahl ein Komitee der ISO die Annahme desjenigen Teils der Nomenklatur, der für Halogenkohlenwasserstoffe und Kohlenwasserstoffe gilt. Die Ausgabe der Norm B79.1 wurde dann 1978 von ASHRAE in die Norm 34 umnummeriert[5]. Die erste offizielle ISO-Norm in Form der ISO 817 wurde 1974 veröffentlicht.[6] Die erste deutsche Norm DIN 8960 wurde 1977 eingeführt[7], zuletzt 1998 aktualisiert und gilt als veraltet.

Die allgemeine Benennung der Kältemittel (DIN 8960 Abs. 6) erfolgt durch den Buchstaben R und nachfolgend drei (Sonderfälle: zwei oder vier) Ziffern z, also in der Form R-zzz, unter Umständen auch mit angehängten Buchstaben b in der Form eines Kurzzeichens R-zzzbb.

Das „R“ steht für Refrigerant, englisch für Kältemittel.

Die Ziffernfolge „zzz“ lässt Rückschlüsse auf die Summenformel zu. Die dritte Ziffer von links ergibt die Gruppenzuordnung.

Die Buchstabenfolge „bb“ bezeichnet Variationen in der Strukturformel.

Ein weiterer (kürzerer) Algorithmus, der Aufschluss auf die chemische Zusammensetzung gibt, ist im Artikel Halogenkohlenwasserstoffe wiedergegeben.

Benennung organischer Kältemittel

[Bearbeiten | Quelltext bearbeiten]

Die Benennung der organischen Kältemittel mit der Summenformel CcHhFfClx erfolgt nach dem Schema (DIN 8960 Abs. 6.1)[8]

R-
Die erste Ziffer ist um 1 kleiner als die Anzahl c der Kohlenstoffatome,
die zweite Ziffer ist um 1 größer als die Anzahl h der Wasserstoffatome und
die dritte Ziffer ist gleich der Anzahl f  der Fluoratome je Molekül;
die Anzahl der Chloratome x = 2c + 2 − h − f  ist gleich der Anzahl der restlichen Bindungen.

Ein Molekül des Kältemittels R-123 zum Beispiel besteht daher aus

c = 1 + 1 = 2 Kohlenstoffatomen,
h = 2 – 1 = 1 Wasserstoffatomen und
f  = 3 Fluoratomen
x = 2c + 2 − h − f = 2 · 2 + 2 − 1 − 3 = 2 Chloratome;

die restlichen zwei Bindungen werden durch zwei Chloratome aufgefüllt. Die Summenformel ist demnach C2HF3Cl2, es handelt sich also um Dichlortrifluorethan.

Sonderfälle

Falls die Anzahl c der Kohlenstoffatome 1 ist, ist c – 1 = 0. Die erste Ziffer wird in diesem Fall nicht ausgeschrieben, und nach dem Buchstaben R folgen unmittelbar die zweite und die dritte Ziffer. Das Kältemittel R-22 (eigentlich R-022) zum Beispiel besteht daher aus

c = 0 + 1 = 1 Kohlenstoffatomen,
h = 2 – 1 = 1 Wasserstoffatomen und
f  = 2 Fluoratomen;

die eine restliche Bindung wird durch ein Chloratom aufgefüllt. Die Summenformel ist also CHF2Cl, es handelt sich also um Chlordifluormethan.

Falls die Verbindung Brom enthält, wird der Benennung der Großbuchstabe B angefügt, gefolgt von der Anzahl der Bromatome. Das Kältemittel R-13B1 zum Beispiel besteht aus

c = 0 + 1 = 1 Kohlenstoffatomen,
h = 1 – 1 = 0 Wasserstoffatomen und
f  = 3 Fluoratomen;

die eine restliche Bindung wird durch ein Bromatom aufgefüllt (Die Anzahl eventuell vorhandener Chloratome wird um die Anzahl der Bromatome verringert). Die Summenformel ist demnach CF3Br, es handelt sich also um Bromtrifluormethan.

Falls es sich um eine ungesättigte organische Verbindung handelt, wird vor die erste Ziffer noch eine 1 eingefügt. Das Kältemittel R-1150 zum Beispiel besteht daher aus

c = 1 + 1 = 2 Kohlenstoffatomen,
h = 5 – 1 = 4 Wasserstoffatomen und
f  = 0 Fluoratomen;

die eine restliche Bindung ist Teil der Doppelbindung. Die Summenformel ist also C2H4, es handelt sich also um Ethen.

Falls es sich um zyklische Kohlenwasserstoffe handelt, wird vor der Kennzahl noch ein C eingefügt. So wird zum Beispiel Cyclooctafluorbutan, Summenformel C4F8, als R-C318 bezeichnet.

Da lediglich die Ziffern 0 bis 9 zur Verfügung stehen, funktioniert dieses Schema nur bis zu Kohlenwasserstoffen mit maximal 8 Wasserstoffatomen je Molekül.

Für Butan, Summenformel C4H10, mit seinen 10 Wasserstoffatomen ist daher ein anderes Schema erforderlich. Solche Verbindungen werden in der Gruppe R-6xx aufgeführt (DIN 8960 Abs. 6.3.1). Die Nummerierung is dabei willkürlich.[8]

Angehängte Kleinbuchstaben werden bei den Verbindungen mit zwei oder mehr Kohlenstoffatomen verwendet, um Isomere zu unterscheiden (DIN 8960 Abs. 3.5 und 6.1). Je alphabetisch höher der oder die angehängten Buchstaben, desto größer die Asymmetrie des Isomers.[8] Bei Verbindungen mit zwei Kohlenstoffatomen bekommt das symmetrischste Isomer dabei keinen angehängten Buchstaben; so ist zum Beispiel

R-134 1,1,2,2-Tetrafluorethan,
R-134a dagegen 1,1,1,2-Tetrafluorethan.

Bei Verbindungen mit drei Kohlenstoffatomen (Propan-Derivate) werden zwei Kleinbuchstaben zur Bezeichnung des Isomers benötigt. Der erste Buchstabe bezieht sich dann auf das zentrale Kohlenstoffatom und wird in der Reihenfolge absteigender Masse der Substituenten (H, F und Cl) vergeben:

a b c d e f
-CCl2- -CFCl- -CF2- -CHCl- -CHF- -CH2-

Der zweite Buchstabe bezeichnet auch hier die Asymmetrie des Isomers, d. h. wird nach steigender Massendifferenz zwischen den Substituenten an den terminalen Kohlenstoffatomen vergeben; das symmetrischste Isomer erhält den Buchstaben a (im Gegensatz zur Bezeichnungsweise bei den Ethan-Derivaten, bei denen das symmetrischste Isomer keinen Buchstaben erhält).

Im speziellen Fall der Hydrofluorolefine werden ebenfalls zwei Kleinbuchstaben angehängt, jedoch bezeichnet der erste der beiden hier den Substituenten am zentralen Kohlenstoffatom gemäß der Regel: x = Cl, y = F und z = H. Der zweite Kleinbuchstabe beschreibt die Substitution am endständigen Methylen-Kohlenstoffatom gemäß der obenstehenden Tabelle[9].

Zeotrope Gemische von Kohlenwasserstoffen werden unter R-4xx, azeotrope Gemische von Kohlenwasserstoffen unter R-5xx zusammengefasst (DIN 8960 Abs. 6.2). Kältemischungen werden einfach durchnummeriert, d. h. ein Rückschluss auf die Zusammensetzung ist nicht möglich. Angehängte Großbuchstaben werden hier verwendet, um unterschiedliche Mischungsverhältnisse zu kennzeichnen.[8]

Benennung anorganischer Kältemittel

[Bearbeiten | Quelltext bearbeiten]

Die Benennung der Anorganischen Verbindungen erfolgt nach dem Schema (DIN 8960 Abs. 6.3.2)[8]

R-7zz

Die erste Ziffer, 7, bezeichnet die Gruppe der Anorganischen Verbindungen; die beiden folgenden Ziffern geben die (ganzzahlig gerundete) Molmasse an. Das Kältemittel R-717, NH3, hat zum Beispiel eine Molmasse von 17 g.

Angehängte Buchstaben werden verwendet, um Stoffe ähnlicher Molmasse zu unterscheiden. So ist zum Beispiel Kohlenstoffdioxid R-744; für das neue Kältemittel Distickstoffmonoxid (Stickoxydul) ist die Bezeichnung R-744A in der Diskussion.

Historische Entwicklung

[Bearbeiten | Quelltext bearbeiten]

Als erstes „professionelles“ Kältemittel wurde zunächst Diethylether (R-610) eingesetzt, dann auch Ammoniak (R-717). Ammoniak wird seit über 130 Jahren in Industriekälteanlagen verwendet und gilt als umweltfreundlich, wirtschaftlich und energieeffizient.

Ein Nachteil dieser Kältemittel ist jedoch die physiologische Gefährlichkeit (Lungenschäden; bei Diethylether auch Narkosewirkung). Ammoniak besitzt jedoch einen starken charakteristischen Geruch und ist bereits ab einer Konzentration von 3 mg/m³ in der Luft wahrnehmbar. Die Warnwirkung tritt deshalb lange vor einer gesundheitsschädlichen Konzentration (> 1750 mg/m³) ein.[10] Diethylether ist sehr leicht entflammbar und bildet mit Luft ein explosives Gemisch.

Demgegenüber hatten die in den 1930er Jahren auf den Markt gebrachten synthetischen Kältemittel auf Basis von Halogenkohlenwasserstoffen den Vorteil, dass sie keine direkte Giftigkeit oder Brennbarkeit aufweisen, weswegen sie auch als Sicherheitskältemittel bezeichnet werden. Durch die Variation der chemischen Zusammensetzung konnte ein breites Spektrum an Eigenschaften dieser Stoffe verändert werden, wodurch Kältemittel für nahezu alle relevanten Temperaturbereiche entwickelt werden konnten. Gängige kommerzielle Bezeichnungen für diese Halogenkohlenwasserstoffe sind die Begriffe Freon (Fa. DuPont) bzw. Frigen (Fa. Hoechst), gefolgt von den Kürzeln für die jeweiligen chemischen Zusammensetzungen. So stehen z. B. die Bezeichnungen Freon 502 und Frigen 502 für das gleiche Kältemittel, für welches heute firmenneutral das Kurzzeichen R-502 (R für Refrigerant) verwendet wird.

Ebenfalls über eine lange Tradition in der Kältetechnik verfügen die Kältemittel Kohlenstoffdioxid (R-744)[11], Ammoniak (R-717) und Kohlenwasserstoffe wie Propan (R-290).[12]

Die in den 1980er Jahren nachgewiesene Gefahr der vor allem mit Chlor und Brom halogenierten Kohlenwasserstoffe (FCKW und Halone) ist jedoch, dass sie im Wesentlichen für den Ozonabbau verantwortlich sind und den Treibhauseffekt verstärken. Ihr Einsatz in Neugeräten wurde daher auf Grundlage der FCKW-Halon-Verbots-Verordnung verboten.

Die chlorierten Kohlenwasserstoffe (FCKW, HFCKW) wurden in den 1990er Jahren durch eine Vielzahl von fluorierten Kohlenwasserstoffen (FKW, HFKW) ersetzt. Diese lediglich mit Fluor halogenierten Kohlenwasserstoffe besitzen kein Ozonabbaupotential, dafür aber ein zum Teil erhebliches Treibhauspotential. So trägt das häufig verwendete HFKW R-404A rund 3.900-mal stärker zum Treibhauseffekt bei als Kohlenstoffdioxid.[13]

Nichthalogenierte brennbare Kohlenwasserstoffe wie Butan (R-600/R-600a) oder Propan (R-290) werden bislang aufgrund der Brennbarkeit überwiegend in Geräteklassen mit geringem Füllmengenbedarf eingesetzt. In Kühl- und Gefrierschränken mit typischen Kältemittel-Füllmengen von 50 bis 150 g werden in Europa fast ausschließlich nichthalogenierte Kohlenwasserstoffe eingesetzt. Geräteklassen aus dem Bereich der Klima-, Kälte- und Wärmepumpentechnik mit größerem Leistungsbereich besitzen einen höheren Füllmengenbedarf und werden wegen der dafür erforderlichen Explosionsschutzmaßnahmen seltener mit diesen Kältemitteln befüllt. In den letzten zehn Jahren wurden jedoch asymmetrische Plattenwärmeübertrager, Microchannelwärmeübertrager und Rundrohr-Lamellen-Wärmeübertrager mit kleiner Nennweite eingeführt, die den Füllmengenbedarf auch für Anlagen mit größerer Leistung deutlich reduzieren.

Zunehmend wird auch das nichtbrennbare und kaum umweltgefährdende Kohlenstoffdioxid (R-744) eingesetzt. Es trägt nicht zum Ozonabbau bei und besitzt ein vielfach geringeres Treibhaus-Potential als herkömmliche Kältemittel, wie etwa Fluorkohlenwasserstoffe. Als Arbeitsmedium in Fahrzeug-Klimaanlagen, Wärmepumpen, Getränkeautomaten als auch in der Supermarkt- und Transportkühlung findet das Kältemittel CO2 bereits Anwendung. Aufgrund der im Vergleich zu den Kohlenwasserstoffverbindungen hohen Systemdrücke sowie der niedrigen kritischen Temperatur sind umfassende Neuentwicklungen der kältetechnischen Komponenten und der Systemtechnik erforderlich gewesen, die jedoch in vielen Anwendungsbereichen bereits abgeschlossen sind.

Wie für alle Kälte-, Klima- und Wärmepumpanwendungen ist der sinnvolle Einsatz von CO2 ausgerichtet an Gesichtspunkten wie einer hohen Anlageneffizienz. So sind zum Beispiel Wärmepumpen mit R-744 nur dann aus energetischer Sicht sinnvoll, wenn die genutzte Temperaturdifferenz zwischen Vor- und Rücklauf mindestens 50 K (Kelvin) beträgt. Diese hohe Temperaturspreizung ist jedoch nur selten anwendbar, da die Warmwasserbereitung mit Wärmepumpen in Deutschland meist mit Speichern betrieben wird, um eine wirtschaftlich sinnvollere Wärmepumpenheizungsanlage mit möglichst geringer Heizleistung nutzen zu können.

In der Kältetechnik hat Kohlenstoffdioxid eine lange Tradition. Bereits vor mehr als hundert Jahren wurde es verwendet, bevor es durch die synthetischen Kältemittel weitgehend verdrängt wurde. Dank seiner Umweltverträglichkeit und des wesentlich geringeren Kältemittelpreises wird es heute wieder verstärkt eingesetzt. Als Kältemittel wurde Kohlenstoffdioxid zuerst von Alexander Twinning in seinem Britischen Patent von 1850 vorgeschlagen. Die erste CO2-Kompressionskältemaschine in Europa wurde 1881 von Carl von Linde konstruiert, von MAN hergestellt und 1882 bei der Friedrich Krupp AG in Essen in Betrieb genommen.

Nach dem Verbot der FCKW und HFCKW sind mittlerweile auch die als Ersatzkältemittel genutzten Stoffe wie FKW und HFKW in die Kritik geraten. Auf Grund ihrer klimaschädigenden Wirkung sehen sie sich einer Verbotsdiskussion ausgesetzt. So wurden FKW und HFKW 1997 als Treibhausgase in das Kyoto-Protokoll aufgenommen. 2006 hat die EU die F-Gase-Verordnung verabschiedet, die Vorgaben hinsichtlich der Verwendung von FKW und HFKW macht und auf eine Verminderung ihrer Emissionen abzielt. Die klimaneutralen Kältemittel sind von den Regelungen nicht betroffen.

Im März 2018 wurde einem Splitgerät von Midea als erstem Klima-Splitgerät der Blaue Engel verliehen, da es mit R-290 recht umweltschonend und zugleich energieeffizient und leise arbeitet.[14]

Kältemittel sollten idealerweise folgende Eigenschaften besitzen:

  • große spezifische Verdampfungsenthalpie
  • hohe volumetrische Kälteleistung
  • hohe Wärmeleitfähigkeit
  • Siedepunkt unterhalb der Zieltemperatur
  • hohe kritische Temperatur
  • kein Temperaturglide
  • niedrige Viskosität
  • nicht brennbar oder explosiv
  • kein Ozonabbaupotential
  • kein Treibhauseffekt
  • nicht giftig
  • bei Austritt durch Geruch wahrnehmbar
  • nicht korrosiv
  • kompatibel mit dem Schmiermittel (meist geht es hierbei um die Löslichkeit)
  • hohe Reinheit sowohl in Einstoff- wie auch in Mehrstoffkältemitteln

Sicherheitsgruppen, L-Gruppen, Aufstellungsbereiche

[Bearbeiten | Quelltext bearbeiten]

Die Kältemittel sind entsprechend Brennbarkeit und Giftigkeit eingeordnet[15] in die Sicherheitsgruppen A1, A2, A3, B1, B2, B3. Die Buchstaben stehen dabei für

A geringere Giftigkeit MAK oberhalb von 400 ppm
B größere Giftigkeit MAK unterhalb von 400 ppm

die Zahlen für

1 keine Flammenausbreitung
2 geringere Brennbarkeit
2L geringe Brennbarkeit bei geringer Flammausbreitungsgeschwindigkeit (< 10 cm/s)
3 größere Brennbarkeit

Zur einfacheren Handhabung werden die Sicherheitsgruppen A1, B1, A2 ... usw. in den sogenannten L-Gruppen L1, L2, L3 (EN 378-1 Abs. 5.4.2) zusammengefasst:

L1 beinhaltet A1
L2 beinhaltet B1, A2, B2
L3 beinhaltet A3, B3

Des Weiteren lassen sich bei Kälteanlagen nach der Art der Aufstellung drei Aufstellungsbereiche A, B, C unterscheiden (EN 378-1 Anh. C):

A alle kältemittelführenden Teile in Personen-Aufenthaltsbereich
B Hochdruckseite der Kälteanlage in Maschinenraum oder im Freien
C alle kältemittelführenden Teile in Maschinenraum oder im Freien

Abhängig von der L-Gruppe und dem Aufstellungsbereich gelten Anforderungen an die zulässigen Kältemittelfüllmengen.[16]

Üblicherweise verwendete Kältemittel

[Bearbeiten | Quelltext bearbeiten]

Im Allgemeinen unterscheidet man zwischen natürlichen und synthetischen Kältemitteln. Unter natürlichen Kältemitteln versteht man Stoffe, die in der Natur vorkommen, wie z. B. Kohlenwasserstoffe, Kohlenstoffdioxid, Ammoniak, Wasser und Luft. Synthetische Kältemittel werden künstlich erzeugt. Zu diesen Stoffen zählen Fluorchlorkohlenwasserstoffe (FCKW), teilhalogenierte Fluorchlorkohlenwasserstoffe (H-FCKW) sowie Fluorkohlenwasserstoffe und teilhalogenierte Fluorkohlenwasserstoffe (FKW und H-FKW).

Natürliche Kältemittel

[Bearbeiten | Quelltext bearbeiten]

Ammoniak (R-717)

[Bearbeiten | Quelltext bearbeiten]
Summenformel NH3
Spezifische Verdampfungsenthalpie (−10 °C) 1300 kJ/kg
Volumetrische Kälteleistung (−10 °C) 3100 kJ/m³
Siededruck (−10 °C) 2,91 bar
Siededruck (+20 °C) 8,57 bar
Siedetemperatur (1 bar) −33 °C
Kritischer Punkt +132,36 °C / 113,61 bar

Ammoniak ist ein klassisches klimaneutrales Kältemittel, das vorwiegend in Großanlagen wie Tiefkühlhäusern, Schlachthäusern, Brauereien, zentraler Kälteerzeugung in der Chemie und in Eislaufbahnen zum Einsatz kommt. Es werden auch kompakte Kaltwasserkälteanlagen angeboten, die eine relativ geringe Kältemittelmenge aufweisen, um das Gefahrenpotential zu reduzieren. Allerdings konnten kompakte Ammoniakkälteanlagen nur in geringem Umfang Einsatzbereiche der Kohlenwasserstoff-Kältemittel ersetzen.

Ammoniak besitzt eine sehr große spezifische Verdampfungsenthalpie und damit eine hohe volumetrische Kälteleistung, die zu einer relativ großen Kompaktheit von Anlagen führt. Es bietet darüber hinaus die Vorteile einer äußerst geringen Entflammbarkeit und trägt nicht zum Treibhauseffekt oder Ozonabbau bei (Halbwertszeit in der Atmosphäre ca. 14 Tage). Ein Nachteil ist seine Giftigkeit; Schäden entstehen vor allem durch Verätzung der Lungen und der Augen, da Ammoniak mit Wasser eine basisch reagierende Lösung bildet: . Der stechende Geruch ist allerdings bereits in sehr geringen Konzentrationen (5 ppm) wahrnehmbar, weit unterhalb der maximalen Arbeitsplatzkonzentration (MAK-Wert, 50 ppm – neue Bezeichnung TRGS 900 AGW (Technische Regeln für Gefahrstoffe ArbeitsplatzGrenzWert) neue Werte 20 (40) ppm 20 ppm innerhalb 8 Stunden Arbeitszeit bzw. innerhalb 8 Stunden Arbeitszeit 4 mal 15 Minuten mit 40 ppm). Aufgrund dieser ausgezeichneten Warnwirkung wird Ammoniak trotz seiner physiologischen Gefährlichkeit der Sicherheitsgruppe B2 (größere Giftigkeit, geringere Brennbarkeit lt. EN 378-1:2008-06 Anhang Tabelle E.1) und damit der L-Gruppe L2b zugeordnet. Ammoniak-Anlagen sind üblicherweise in der Nenndruckstufe PN 25 ausgeführt (EN 378-2 Abs. 5.1). Der Installationsaufwand für Ammoniakkälteanlagen ist größer, da im Gegensatz zu Anlagen mit Kohlenwasserstoffen keine Buntmetalle (etwa Kupferrohre, Messing-Fittinge) eingesetzt werden können.

Kohlenstoffdioxid (R-744)

[Bearbeiten | Quelltext bearbeiten]
Summenformel CO2
Spezifische Verdampfungsenthalpie (−10 °C) 260 kJ/kg
Volumetrische Kälteleistung (−10 °C) 18400 kJ/m³
Siededruck (−10 °C) 26,49 bar
Siededruck (+20 °C) 57,29 bar
Sublimationstemperatur (1 bar)
Siedetemperatur (5,2 bar)
−78,4 °C
−56,5 °C (Tripelpkt.)
Kritischer Punkt +30,98 °C / 73,77 bar

Kohlenstoffdioxid besitzt ähnlich wie Ammoniak eine sehr große volumetrische Kälteleistung, was analog zu kompakteren und weniger Material benötigenden Kältekreisen führt. Auch Kohlenstoffdioxid hat den Vorteil, nicht entflammbar zu sein, und trägt nicht zum Ozonabbau bei. Seine Treibhauswirkung ist, durch die im Vergleich marginalen Mengen (die durch die Verwendung als Kältemittel sogar vorläufig nicht in die Atmosphäre freigesetzt werden) vernachlässigbar. Im Vergleich zu Ammoniak ist Kohlenstoffdioxid wenig giftig und geruchlos; es ist allerdings schwerer als Luft und kann bereits in Konzentrationen von etwa 8 % durch Behinderung der Atmung tödlich wirken.

Kohlenstoffdioxid zählt zur Sicherheitsgruppe A1 (geringere Giftigkeit, keine Flammenausbreitung) und damit zur L-Gruppe L1. Einen Nachteil stellen die relativ hohen Betriebsdrücke dar. Üblicherweise unterscheidet man unterkritische (subkritische) CO2-Kälteanlagen, überkritische (superkritische) oder transkritische (sowohl sub- als auch superkritische Zustände treten auf) Anlagen. Subkritische Kohlenstoffdioxid-Anlagen sind daher üblicherweise in Nenndruckstufe PN 40 oder PN 64 ausgeführt (EN 378-2 Abs. 5.1). Beim Abschalten der Anlage und Erwärmung auf die Umgebungstemperatur treten allerdings wesentlich höhere Drücke auf, so dass das Kältemittel entweder in einen Hochdruckbehälter überführt werden muss oder eine Notkühlung zu installieren ist.

Komponenten für diese Anlagen sind mittlerweile verfügbar und Kohlenstoffdioxid wird in gewerblichen Anlagen zunehmend angewandt. Es wird teilweise in zweistufigen Kälteanlagen für den Primärkreis (tiefste Verdampfungstemperatur) verwendet, wobei für den Sekundärkreis (höhere Verdampfungstemperatur) Ammoniak als Kältemittel verwendet wird. Ein wesentlicher Vorteil von Kohlenstoffdioxid besteht darin, dass im Gegensatz zu Ammoniak bei Leckagen an den Direktverdampfern die zu kühlenden Produkte nicht kontaminiert werden. Dies ist z. B. bei der Kühlung von Lebensmitteln und Pharmaprodukten ein entscheidender Vorteil. Zweistufige Kälteanlagen, bei denen beide Druckstufen mit dem Kältemittel Kohlenstoffdioxid betrieben werden mit überkritischer Verflüssigung, werden mittlerweile auch im technischen Maßstab eingesetzt. Die Versuche zur Anwendung von Kohlenstoffdioxid in Autoklimaanlagen sind wegen relativ hoher Kosten und dem Umschwenken des VDA weg von R-744 hin zu R-1234yf[17] fast aufgegeben worden. Nur in wenigen hochpreisigen Modellen findet man heutzutage mobile Klimaanlagen auf Basis von R-744. In der Masse ist auf die Einführung jedoch verzichtet worden mit der Begründung, eine globale Standardisierung schaffen zu wollen.[18] Ein weiterer Grund, auf die Umstellung zu verzichten, ist sicher die Wirtschaftlichkeit gewesen. Es wären vollständige Neuentwicklungen für Kältekreise in mobilen Klimaanlagen notwendig gewesen, da aufgrund der Drucklage von R-744 nicht auf bestehende Baugruppen von bisherigen Klimaanlagen auf R-134a-Basis zurückgegriffen werden konnte. Dieses Verhalten lässt sich letztlich auch bei Autoherstellern wiederfinden. Die Ausnahmegenehmigung der EU-Kommission, mobile Klimaanlagen auch mit Kältemitteln mit höherem Treibhauspotential auf den Markt zu bringen, drohte auszulaufen – rein rechtlich wäre nach der MAC-Richtlinie 2006/40/EG bereits früher eine Umstellung auf Kältemittel in mobilen Klimaanlagen mit einem GWP-Wert von unter 150 erforderlich gewesen, was jedoch bei allen europäischen Herstellern nicht erfolgte, da das Kältemittel noch nicht verfügbar und somit die Umstellung von R-134a auf R-1234yf längere Zeit nicht möglich war. Unter großer medialer Aufmerksamkeit wurde dann mit Verweis auf die Brennbarkeit dieses Kältemittels dessen Einführung in Frage gestellt[19]. Letztlich jedoch wurde auch für diesen Hersteller wie oben beschrieben die meisten Modelle mit Klimaanlagen auf Basis von R-1234yf neu auf den Markt gebracht.[20] Die Notwendigkeit zur Effizienzsteigerung bei Elektroautos führt jedoch dazu, dass Fahrzeughersteller mittlerweile wieder vermehrt auf R-744 setzen. So besitzt es im Wärmepumpenbetrieb doch den besten COP, im Vergleich zu Kältemitteln wie R-290 oder R-1234yf. Beispielsweise ist der VW ID.3 und der VW ID.4 optional mit einem R-744 Kältekreis zu bekommen.[21]

Summenformel H2O
Verdampfungsenthalpie (−10 °C) 2860 kJ/kg
Volumetrische Kälteleistung (−10 °C) 2 kJ/m³
Siededruck (−10 °C) 0,003 bar
Siededruck (+20 °C) 0,024 bar
100 °C
Kritischer Punkt +373,95 °C / 220,64 bar

Wasser ist in seiner reinen Form aufgrund seines Gefrierpunktes nur oberhalb des Tripelpunkts (0,1 °C, 0,006 bar) als Kältemittel verwendbar und gehört neben NH3, Propan, Butan und CO2 zu den sogenannten natürlichen Kältemitteln.[22] Es weist nur eine relativ geringe volumetrische Kälteleistung auf,[23] Kälteanlagen mit Wasser kühlen unter anderem Rechenzentren, Industrieprozesse und Gebäude bei Unternehmen wie Siemens, Trumpf, Gardena, DLR und BT Group.[24][25][26][27] Wasser hat kein Ozonabbau- oder Treibhauspotential, ist nicht giftig, nicht brennbar und bietet eine hohe Energieeffizienz. Laut Umweltbundesamt verbrauchen die eChiller genannten Geräte bis zu 80 Prozent weniger Energie als vergleichbare Anlagen mit HFKW-Kältemitteln.[28] Die Klimaschutz- und Energieagentur Niedersachsen schreibt, das Kältemittel Wasser sei „nahezu ideal, aber nur für Anwendungen oberhalb 0 °C möglich.“[29] Zumeist werden Turboverdichter oder auch Rootsgebläse zur Erzeugung des Unterdrucks und Kühlung der Flüssigkeit eingesetzt. Die Kälteleistungen liegen bei 360 kW bis 4 MW. Bei dem Prozess wird teilweise der Tripelpunkt angefahren, um ein Wasser-Eis-Gemisch zu erzeugen. Aufgrund der hohen Druckgefälle müssen die Anlagen mehrstufig ausgelegt werden.[30] Wasser als Kältemittel ist klimaneutral und kann daher auch in offenen Kälteanlagen eingesetzt werden. Eine größere Verbreitung von Kälteanlagen mit dem Kältemittel Wasser hat sich bislang nicht durchgesetzt.

Kohlenwasserstoffe

[Bearbeiten | Quelltext bearbeiten]
Summenformel C3H8
Spezifische Verdampfungsenthalpie (−10 °C) 388 kJ/kg
Volumetrische Kälteleistung (−10 °C) 2960 kJ/m³
Siededruck (−10 °C) 3,45 bar
Siededruck (+20 °C) 8,36 bar
Siedetemperatur (1 bar) −42,4 °C

Eigenschaften am Beispiel von Propan (R-290); die Eigenschaften anderer Kohlenwasserstoffe können je nach der chemischen Zusammensetzung auch deutlich abweichen.

Kohlenwasserstoffe besitzen typischerweise spezifische Verdampfungsenthalpien in der Größenordnung von 200 kJ/kg. Typische Kältemittel sind Ethan (R-170), Propan (R-290), Butan (R-600), Isobutan (R-600a) sowie Pentan (R-601). Die aufgeführten Kohlenwasserstoffe besitzen ein sehr geringes Treibhausgas- und kein Ozonschädigungspotenzial. Typische in der Kältetechnik eingesetzte Kohlenwasserstoffe als Kältemittel sind gemäß der DIN EN 378 nicht giftig und werden daher unter Berücksichtigung der Entflammbarkeit mit A3 klassifiziert. Die volumetrische Kälteleistung ist niedriger als bei Ammoniak oder CO2 oder auch R-32 und R-410A. Jedoch können Anlagen durch die geringe Viskosität trotzdem mit sehr geringen Füllmengen auskommen. Sehr vorteilhaft wirkt sich auch meist das geringe Druckverhältnis aus, das sich je nach treibendem Temperaturgefälle einstellt und gegen das der Verdichter nur eine verhältnismäßig kleine Volumenänderungsarbeit aufbringen muss.

Die am Markt relevanten Kohlenwasserstoffe zählen meist zu der L-Gruppe L3. Seit Mitte der 1990er Jahre dominieren Kohlenwasserstoffe wie Isobutan oder Pentan die eingesetzten Kältemittel in Kühlschränken und Gefriertruhen. Dies macht jedoch aufgrund des Leistungsbereichs und der Füllmenge nur einen Bruchteil der eingesetzten Kältemittel in Deutschland aus. Vermehrt finden sich auch Anlagen in der Gewerbekälte und als Wärmepumpen auf Basis von Propan als Kältemittel.

Synthetische Kältemittel

[Bearbeiten | Quelltext bearbeiten]
Summenformel C2H2F4
Spezifische Verdampfungsenthalpie (−10 °C) 206 kJ/kg
Volumetrische Kälteleistung (−10 °C) 2070 kJ/m³
Siededruck (−10 °C) 2,01 bar
Siededruck (+20 °C) 5,72 bar
Siedetemperatur (1 bar) −26,3 °C

Eigenschaften am Beispiel von 1,1,1,2-Tetrafluorethan (R-134a); die Eigenschaften anderer Halogenkohlenwasserstoffe können je nach der chemischen Zusammensetzung auch deutlich abweichen.

Synthetische Kältemittel basieren ausschließlich auf der Stoffgruppe der Halogenierten Kohlenwasserstoffe. Die Vielfalt ist jedoch groß, was zu erheblich unterschiedlichen Eigenschaften führt. Diese Kältemittel zählen zu den L-Gruppen L1 oder L2. Manche halogenierten Kohlenwasserstoffe wirken betäubend und wurden teilweise als Narkosemittel eingesetzt (vgl. Chloroform CCl3H). Der Geruch ist schwach bis stark und lösemittelartig.

Die gebräuchlichen Abkürzungen im deutschen Sprachraum für halogenierte und nicht-halogenierte Kohlenwasserstoffe sind (EN 378-1 Abs. 3.7.9):

Abk. Bezeichnung Halogenierung besteht aus
FCKW Fluor-Chlor-Kohlenwasserstoff voll-halogeniert C, H, F, Cl
FKW Fluor-Kohlenwasserstoff C, H, F
HFCKW Hydrogen-Fluor-Chlor-Kohlenwasserstoff teil-halogeniert C, H, F, Cl
HFKW Hydrogen-Fluor-Kohlenwasserstoff C, H, F
KW Kohlenwasserstoff nicht halogeniert C, H

Hydrofluorolefine

[Bearbeiten | Quelltext bearbeiten]

In Anbetracht der Einschränkungen in der Verwendung der FKW-Kältemittel wurden ab 2010 hydrofluorierte Kohlenwasserstoffe auf den Markt gebracht. Die Olefine haben eine Doppelbildung zwischen den Kohlenstoffatomen und sind in der Atmosphäre schnell abbaubar. Die Doppelbindung reagiert wirkungsvoll mit den natürlich vorkommenden Hydroxylradikalen. Die Lebensdauern der HFO wird mit Tagen bis Wochen in der Atmosphäre angegeben, so dass der GWP100 dieser Verbindungen deutlich unter 1 liegt.[31] Die Stoffgruppe basieren auf dem Propylen, wobei die Wasserstoffatome teilweise durch Fluoratome ersetzt sind. Damit ist die Brennbarkeit im Vergleich zum Propylen ja nach Anzahl der Fluoratome reduziert oder aufgehoben. Allerdings sind Kältemittel aus der Gruppe auch giftig (FO-1225ye(Z), cis-1,2,3,3,3-pentafluorpropen), so dass sich deren Verwendung nicht durchgesetzt hat. Das Kältemittel HFO-1234yf (2,3,3,3-Tetrafluorpropen) ist schwer zu entzünden und die Flamme instabil. Die Eigenschaften dieses Kältemittels stellen einen Kompromiss zwischen niedrigem GWP und geringer Entzündbarkeit dar, so dass sich dieses HFO-Kältmittel für eine breitere Anwendung etabliert hat. So hat sich bisher lediglich HFO-1234yF als Kältemittel etabliert. Mittlerweile wird es in Europa (Stand 2022) als bevorzugtes Kältemittel in Kfz-Klimaanlagen eingesetzt. Als negative Umweltauswirkung gilt das atmosphärische Abbauprodukt der HFO, da sich Trifluoressigsäure oder TFA (C2HF3O2) bildet, die wasserlöslich, giftig für Kleinlebewesen und auch schlecht abbaubar sind. Unter diesem Hintergrund ist eine umfassende Verwendung dieses Kältemittels nicht geklärt.[32]

Einfluss auf Ozonschicht und Treibhauseffekt

[Bearbeiten | Quelltext bearbeiten]
Stoff Ozonabbau­potential (ODP) Treibhaus­potential (GWP)
Ammoniak (NH3)
Kohlenstoffdioxid (CO2) 0000 – 00001
Kohlenwasserstoffe (Propan C3H8, Butan C4H10) 0000 – 00003
Wasser (H2O)
Fluor-Chlor-Kohlenwasserstoffe (FCKW) 1 4680 – 10720
teilhalogenierte Fluor-Chlor-Kohlenwasserstoffe (HFCKW) 0,02 – 0,06 0076 – 02270
Perfluor-Kohlenwasserstoffe (PFKW) 5820 – 12010
teilhalogenierte Fluor-Kohlenwasserstoffe (HFKW) 0122 – 14310

Während Ammoniak, Kohlenstoffdioxid und die nichthalogenierten Kohlenwasserstoffe weitgehend umweltverträglich sind, haben die halogenierten Kohlenwasserstoffe in dieser Hinsicht zwei Nachteile:

Zum einen zerstören die aus den chlorierten und bromierten Kohlenwasserstoffen in größeren Höhen unter UV-Einstrahlung freigesetzten Chlor- und Bromradikale die Ozonschicht:

insgesamt also

Chlor wirkt bei dieser Reaktion katalytisch, d. h. wird also nicht verbraucht. Damit kann er wieder und wieder aufs Neue Ozonmoleküle (O3) in normale Sauerstoffmoleküle (O2) umwandeln. Dieser Effekt ist umso ausgeprägter, je geringer die Stabilität und je höher der Chloranteil der Verbindung ist. Je stärker die Ozonschicht geschädigt ist, desto mehr der kurzwelligen UV-Anteile werden bis zur Erdoberfläche durchgelassen. Zahlenmäßig erfassbar wird der Beitrag eines Kältemittels zum Abbau der Ozonschicht durch das Ozonabbaupotential (ODP); dieses ist per Definition für Trichlorfluormethan (R-11) gleich 1,0. Besonders hohe Ozonabbaupotentiale von bis zu 10 haben bromierte Kohlenwasserstoffe wie z. B. Bromtrifluormethan (R-13B1); die ODP-Werte der noch zugelassenen Kältemittel liegen außer bei Chlordifluormethan (R-22) nahe Null. Kältemittel aus den Gruppen der FKW und HFKW tragen nicht zum Abbau der stratosphärischen Ozonschicht bei (ODP = 0).

Wegen der ozonabbauenden Wirkung wurde 1987 unter Beteiligung von etwa 70 Nationen der Ausstieg aus Herstellung und Verwendung der FCKW beschlossen („Montreal-Protokoll“) und in nationale Bestimmungen übernommen, so für Deutschland durch einen Beschluss des Bundeskabinetts vom 30. Mai 1990 („Verordnung zum Verbot von bestimmten die Ozonschicht abbauenden Halogenierten Kohlenwasserstoffen“, „FCKW-Halon-Verbots-Verordnung“; Halon = halogenierter Kohlenwasserstoff, der neben Fluor oder Chlor auch Brom enthält). Die FCKW wurden in der Folge durch andere Halogenierte Kohlenwasserstoffe ersetzt, in denen die Chloratome teilweise, wie in den HFCKW oder ganz, wie in den HFKW, FKW und KW, durch Fluor- oder Wasserstoffatome ausgetauscht sind. Für die chemischen Eigenschaften der einzelnen Zusammensetzungen gilt dabei generell, dass die Verbindung durch einen hohen Wasserstoffanteil brennbar, durch einen hohen Chloranteil giftig und durch einen hohen Fluoranteil stabil wird.

Um die alten FCKW-Anlagen unter möglichst gleichen Bedingungen weiterbetreiben zu können, sollten die als Ersatzkältemittel verwendeten HFCKW, HFKW, FKW und KW möglichst gleiche physikalische Eigenschaften aufweisen, was sich in manchen Fällen nur mit Mischungen erreichen lässt. Diese Mischungen werden nach ihrem Siedeverhalten in zeotrope und azeotrope Gemische unterteilt (DIN 8960 Abs. 3.6):

  • Zeotrope Gemische haben einen Siedebereich (= Temperaturglide, Differenz zwischen Siede- und Taupunkttemperatur bei konstantem Druck), und entmischen sich beim Sieden; Flüssigkeit und Dampf haben dabei unterschiedliche Zusammensetzungen.
  • Azeotrope Gemische haben einen Siedepunkt und entmischen sich nicht beim Sieden, Flüssigkeit und Dampf haben also die gleiche Zusammensetzung.

Treibhauseffekt

[Bearbeiten | Quelltext bearbeiten]

Zum anderen tragen halogenierte Kohlenwasserstoffe ähnlich wie CO2 zum Treibhauseffekt bei. Dabei wird kurzwellige Strahlung beim Auftreffen auf die Erdoberfläche in langwellige Infrarotstrahlung umgewandelt, diese wird dann an Molekülen mit hohem Absorptionsgrad im Infrarotbereich (Kohlenstoffdioxid, FCKW, Halon) zurück zur Erde reflektiert.

Während CO2 und Kohlenwasserstoffe aus nichtfossilen Quellen als unbedenklich gelten, da sie in den biologischen Kreislauf eingebunden sind, gilt dies nicht für künstlich erzeugte und biologisch kaum abbaubare halogenierte Kohlenwasserstoffe. Dieser Effekt ist umso ausgeprägter, je höher die Stabilität der Verbindung ist.

Zahlenmäßig erfassbar wird der Beitrag eines Kältemittels zum Treibhauseffekt durch das Treibhauspotential (GWP) nach DIN 8960 - siehe auch Tabelle oben; dieser ist für CO2 definiert als 1,0.
Analog dazu wurde speziell für halogenierte Kohlenwasserstoffe der HGWP-Wert (Halocarbon Global Warming Potential) eingeführt; im Unterschied zum GWP-Wert ist der HGWP-Wert für Trichlorfluormethan (R-11) gleich 1,0.
Ein besonders hohes Treibhauspotential von größer 12.000 erreichen Chlortrifluormethan (R-13) und Fluoroform (R-23); das Treibhauspotential der derzeit noch üblichen Kältemittel liegt zwischen 1.500 und 4.000.

Kurzzeichen R-10…R-1336

[Bearbeiten | Quelltext bearbeiten]

Kurzzeichen organischer Kältemittel

[Bearbeiten | Quelltext bearbeiten]
R-xx Kohlenwasserstoffe mit 1 Kohlenstoffatom
ASHRAE-
Nummer
Summen-
Formel
Name Gruppe
R-10 CCl4 Tetrachlormethan CKW
R-11 CFCl3 Trichlorfluormethan FCKW
R-12 CF2Cl2 Dichlordifluormethan FCKW
R-12B1 CF2ClBr Bromchlordifluormethan FCKW
R-12B2 CF2Br2 Dibromdifluormethan FCKW
R-13 CF3Cl Chlortrifluormethan FCKW
R-13B1 CF3Br Bromtrifluormethan FCKW
R-13I1 CF3I Trifluoriodmethan FCKW
R-14 CF4 Tetrafluormethan FKW
R-20 CHCl3 Chloroform
R-21 CHFCl2 Dichlorfluormethan HFCKW
R-22 CHF2Cl Chlordifluormethan HFCKW
R-22B1 CHF2Br Bromdifluormethan HFCKW
R-23 CHF3 Fluoroform HFKW
R-30 CH2Cl2 Dichlormethan
R-31 CH2FCl Chlorfluormethan HFCKW
R-32 CH2F2 Difluormethan HFKW
R-40 CH3Cl Chlormethan
R-41 CH3F Fluormethan
R-50 CH4 Methan KW
R-1xx Kohlenwasserstoffe mit 2 Kohlenstoffatomen
ASHRAE-
Nummer
Summen-
Formel
Name Gruppe
R-110 C2Cl6 Hexachlorethan
R-111 C2FCl5 Pentachlorfluorethan FCKW
R-112 C2F2Cl4 1,1,2,2-Tetrachlor-1,2-difluorethan FCKW
R-112a C2F2Cl4 1,1,1,2-Tetrachlor-2,2-difluorethan FCKW
R-113 C2F3Cl3 1,1,2-Trichlor-1,2,2-trifluorethan FCKW
R-113a C2F3Cl3 1,1,1-Trichlor-2,2,2-trifluorethan FCKW
R-114 C2F4Cl2 1,2-Dichlor-1,1,2,2-tetrafluorethan FCKW
R-114a C2F4Cl2 1,1-Dichlor-1,2,2,2-tetrafluorethan FCKW
R-115 C2F5Cl Chlorpentafluorethan FCKW
R-116 C2F6 Hexafluorethan FKW
R-120 C2HCl5 Pentachlorethan
R-122 C2HF2Cl3 Trichlordifluorethan HFCKW
R-123 C2HF3Cl2 2,2-Dichlor-1,1,1-trifluorethan HFCKW
R-123a C2HF3Cl2 1,2-Dichlor-1,1,2-trifluorethan HFCKW
R-123b C2HF3Cl2 1,1-Dichlor-1,2,2-trifluorethan HFCKW
R-124 C2HF4Cl 1-Chlor-1,2,2,2-tetrafluorethan HFCKW
R-124a C2HF4Cl Chlor-1,1,2,2-tetrafluorethan HFCKW
R-125 C2HF5 Pentafluorethan HFKW
R-131 C2H2FCl3 Trichlorfluorethan HFCKW
R-132 C2H2F2Cl2 Dichlordifluorethan HFCKW
R-133a C2H2F3Cl 1-Chlor-2,2,2-trifluorethan HFCKW
R-134 C2H2F4 1,1,2,2-Tetrafluorethan HFKW
R-134a C2H2F4 1,1,1,2-Tetrafluorethan HFKW
R-141 C2H3FCl2 1,2-Dichlor-1-fluorethan HFCKW
R-141b C2H3FCl2 1,1-Dichlor-1-fluorethan HFCKW
R-142 C2H3F2Cl Chlor-1,2-difluorethan HFCKW
R-142b C2H3F2Cl 1-Chlor-1,1-difluorethan HFCKW
R-143 C2H3F3 1,1,2-Trifluorethan HFKW
R-143a C2H3F3 1,1,1-Trifluorethan HFKW
R-150 C2H4Cl2 1,2-Dichlorethan
R-150a C2H4Cl2 1,1-Dichlorethan
R-151 C2H4FCl Chlorfluorethan HFCKW
R-152a C2H4F2 1,1-Difluorethan HFKW
R-160 C2H5Cl Chlorethan
R-170 C2H6 Ethan KW
R-11xx Kohlenwasserstoffe mit 2 Kohlenstoffatomen und C-Doppelbindung
ASHRAE-
Nummer
Summen-
Formel
Name Gruppe
R-1112a C2Cl2F2 1,1-Dichlor-2,2-difluorethen
R-1113 C2ClF3 1-Chlor-1,2,2-Trifluorethen
R-1114 C2F4 Tetrafluorethen
R-1120 C2HCl3 Trichlorethen
R-1130 C2H2Cl2 1,2-Dichlorethen
R-1132a C2H2F2 1,1-Difluorethen
R-1140 C2H3Cl Chlorethen (früher: Vinylchlorid) HCKW
R-1141 C2H3F Fluorethen (früher: Vinylfluorid) FKW
R-1150 C2H4 Ethen (früher: Ethylen) KW
R-2xx Kohlenwasserstoffe mit 3 Kohlenstoffatomen
In der letzten Spalte ist hier zusätzlich die jeweilige CAS-Nummer des betreffenden Stoffs vermerkt.
ASHRAE-
Nummer
Summen-
Formel
Name CAS-Nummer
R-211 C3Cl7F Heptachlorfluorpropan 422-78-6
R-212 C3Cl6F2 Hexachlordifluorpropan 134452-44-1
R-213 C3Cl5F3 Pentachlortrifluorpropan 2354-06-5
R-214 C3Cl4F4 Tetrachlortetrafluorpropan 2268-46-4
R-215 C3Cl3F5 Trichlorpentafluorpropan 4259-43-2
R-216 C3Cl2F6 1,2-Dichlor-1,1,2,3,3,3-hexafluorpropan 661-97-2
R-216ca C3Cl2F6 1,3-Dichlor-1,1,2,2,3,3-hexafluorpropan 662-01-1
R-217 C3ClF7 1-Chlor-1,1,2,2,3,3,3-heptafluorpropan 422-86-6
R-217ba C3ClF7 2-Chlor-1,1,1,2,3,3,3-heptafluorpropan 76-18-6
R-218 C3F8 Octafluorpropan 76-19-7
R-221 C3HFCl6 Hexachlorfluorpropan 422-26-4
R-222 C3HF2Cl5 Pentachlordifluorpropan 134237-36-8
R-222c C3HF2Cl5 1,1,1,3,3-Pentachlor-2,2-difluorpropan 422-49-1
R-223 C3HF3Cl4 Tetrachlortrifluorpropan
R-223ca C3HF3Cl4 1,1,3,3-Tetrachlor-1,2,2-trifluorpropan 422-52-6
R-223cb C3HF3Cl4 1,1,1,3-Tetrachlor-2,2,3-trifluorpropan 422-50-4
R-224 C3HF4Cl3 Trichlortetrafluorpropan
R-224ca C3HF4Cl3 1,3,3-Trichlor-1,1,2,2-tetrafluorpropan 422-54-8
R-224cb C3HF4Cl3 1,1,3-Trichlor-1,2,2,3-tetrafluorpropan 422-53-7
R-224cc C3HF4Cl3 1,1,1-Trichlor-2,2,3,3-tetrafluorpropan 422-51-5
R-225 C3HF5Cl2 Dichlorpentafluorpropan 127564-92-5
R-225aa C3HF5Cl2 2,2-Dichlor-1,1,1,3,3-pentafluorpropan 128903-21-9
R-225ba C3HF5Cl2 2,3-Dichlor-1,1,1,2,3-pentafluorpropan 422-48-0
R-225bb C3HF5Cl2 1,2-Dichlor-1,1,2,3,3-pentafluorpropan 422-44-6
R-225ca C3HF5Cl2 3,3-Dichlor-1,1,1,2,2-pentafluorpropan 422-56-0
R-225cb C3HF5Cl2 1,3-Dichlor-1,1,2,2,3-pentafluorpropan 507-55-1
R-225cc C3HF5Cl2 1,1-Dichlor-1,2,2,3,3-pentafluorpropan 13474-88-9
R-225da C3HF5Cl2 1,2-Dichlor-1,1,3,3,3-pentafluorpropan 431-86-7
R-225ea C3HF5Cl2 1,3-Dichlor-1,1,2,3,3-pentafluorpropan 136013-79-1
R-225eb C3HF5Cl2 1,1-Dichlor-1,2,3,3,3-pentafluorpropan 111512-56-2
R-226 C3HF6Cl Chlorhexafluorpropan
R-226ba C3HF6Cl 2-Chlor-1,1,1,2,3,3-hexafluorpropan 51346-64-6
R-226ca C3HF6Cl 3-Chlor-1,1,1,2,2,3-hexafluorpropan 422-57-1
R-226cb C3HF6Cl 1-Chlor-1,1,2,2,3,3-hexafluorpropan 422-55-9
R-226da C3HF6Cl 2-Chlor-1,1,1,3,3,3-hexafluorpropan 431-87-8
R-226ea C3HF6Cl 1-Chlor-1,1,2,3,3,3-hexafluorpropan 359-58-0
R-227ea C3HF7 1,1,1,2,3,3,3-Heptafluorpropan 431-89-0
R-236fa C3H2F6 1,1,1,3,3,3-Hexafluorpropan 690-39-1
R-245cb C3H3F5 1,1,1,2,2-Pentafluorpropan 1814-88-6
R-245fa C3H3F5 1,1,1,3,3-Pentafluorpropan 460-73-1
R-261 C3H5FCl2 Dichlorfluorpropan 134237-45-9
R-261ba C3H5FCl2 1,2-Dichlor-2-fluorpropan 420-97-3
R-262 C3H5F2Cl Chlordifluorpropan 134190-53-7
R-262ca C3H5F2Cl 1-Chlor-2,2-difluorpropan 420-99-5
R-262fa C3H5F2Cl 3-Chlor-1,1-difluorpropan
R-262fb C3H5F2Cl 1-Chlor-1,3-difluorpropan
R-263 C3H5F3 Trifluorpropan
R-271 C3H6FCl Chlorfluorpropan 134190-54-8
R-271b C3H6FCl 2-Chlor-2-fluorpropan 420-44-0
R-271d C3H6FCl 2-Chlor-1-fluorpropan
R-271fb C3H6FCl 1-Chlor-1-fluorpropan
R-272 C3H6F2 Difluorpropan
R-281 C3H7F Fluorpropan
R-290 C3H8 Propan 74-98-6
R-12xx Kohlenwasserstoffe mit 3 Kohlenstoffatomen und C-Doppelbindung
ASHRAE-
Nummer
Summen-
Formel
Name CAS-Nummer
R-1216 C3F6 Hexafluorpropen 116-15-4
R (C3F6)3 Hexafluorpropen-trimer 6792-31-0
R-1224yd(Z) C3HClF4 (Z)-1-Chlor-2,3,3,3-tetrafluoropropen
R-1225ye C3HF5 1,2,3,3,3-Pentafluorpropen 5528-43-8
R-1225zc C3HF5 1,1,3,3,3-Pentafluorpropen 690-27-7
R-1233zd(E) C3ClF3H2 1-Chlor-3,3,3-Trifluorpropen 102687-65-0
R-1234ye(E) C3H2F4 1,1,2,3-Tetrafluor-2-propen 115781-19-6
R-1234ye(Z) C3H2F4 1,1,2,3-Tetrafluor-2-propen 730993-62-1
R-1234yf C3H2F4 2,3,3,3-Tetrafluorpropen 754-12-1
R-1234ze(E) C3H2F4 (E)-1,3,3,3-Tetrafluorpropen 29118-24-9
R-1243zf C3H3F3 3,3,3-Trifluorpropen 677-21-4
R-1270 C3H6 Propen (früher: Propylen) 115-07-1
R-3xx Fluorierte Kohlenwasserstoffe mit 4 oder mehr Kohlenstoffatomen
ASHRAE-
Nummer
Summen-
Formel
Name Gruppe
R-C316 C4Cl2F6 1,2-Dichlor-1,2,3,3,4,4-hexafluorcyclobutan FCKW
R-C317 C4F7Cl Chlorheptafluorcyclobutan FCKW
R-C318 C4F8 Octafluorcyclobutan FKW
R-13xx Kohlenwasserstoffe mit 4 Kohlenstoffatomen und C-Doppelbindung
ASHRAE-
Nummer
Summen-
Formel
Name CAS-Nummer
R-1336mzz(E) C4H2F6 (E)-1,1,1,4,4,4-Hexafluor-2-buten 66711-86-2
R-1336mzz(Z) C4H2F6 (Z)-1,1,1,4,4,4-Hexafluor-2-buten 692-49-9
R-6xx Chlor- und fluorfreie Kohlenwasserstoffe mit 4 oder mehr Kohlenstoffatomen und andere
R-Nr. Summen-
formel
Name Strukturformel Art Siedep.
(°C)
Druck (bar)
0 °C 20 °C
R-600 C4H10 Butan CH3-CH2-CH2-CH3 KW −0,50 2,080
R-600a C4H10 Isobutan KW −11,7 3,019
R-601 C5H12 Pentan CH3-CH2-CH2-CH2-CH3 KW 36 0,562
R-601a C5H12 Isopentan KW 28 0,761
R-601b C5H12 Neopentan KW 9,5 1,500
R-610 C4H10O Diethylether CH3-CH2-O-CH2-CH3 35 0,590
R-611 C2H4O2 Methylformiat CH3-O-CO-H 32 0,640
R-630 CH5N Methylamin CH3(NH2) −6,3 2,900
R-631 C2H7N Ethylamin CH3-CH2(NH2) 16,6 1,100

Kurzzeichen anorganischer Kältemittel

[Bearbeiten | Quelltext bearbeiten]

Die drei Ziffern (z. B. bei R-717 die 717) bezeichnen jeweils die Molmasse um 700 erhöht (d. h. die Molmasse beträgt gerundet 17 g/mol).

R-7xx Elemente und anorganische Verbindungen
ASHRAE-
Nummer
Summen-
Formel
Name Anmerkung
R-702 H2 Wasserstoff
R-704 He Helium
R-717 NH3 Ammoniak
R-718 H2O Wasser
R-720 Ne Neon
R-723 Ammoniak/Dimethylether azeotropes Gemisch, Masse: 6040, Mol:  8020
R-728 N2 Stickstoff
R-729 Luft Gemisch
R-732 O2 Sauerstoff
R-740 Ar Argon
R-744 CO2 Kohlenstoffdioxid
R-744A N2O Distickstoffmonoxid Synonyme: Lachgas, Stickoxydul (veraltet)
R-764 SO2 Schwefeldioxid
R-846 SF6 Schwefelhexafluorid (700 + Molmasse 146 = 846)

Kurzzeichen organischer Kältemittelgemische

[Bearbeiten | Quelltext bearbeiten]
R-4xx Zeotrope Gemische von Kohlenwasserstoffen
ASHRAE-
Nummer
Massen-
anteile
Zusammen-
setzung
R-400 50 % oder 60 %
50 % oder 40 %
R-12
R-114
R-401A 53,0 %
13,0 %
34,0 %
R-22
R-152a
R-124
R-401B 61,0 %
11,0 %
28,0 %
R-22
R-152a
R-124
R-401C 33,0 %
15,0 %
52,0 %
R-22
R-152a
R-124
R-402A 60,0 %
02,0 %
38,0 %
R-125
R-290
R-22
R-402B 38,0 %
02,0 %
60,0 %
R-125
R-290
R-22
R-403A 75,0 %
20,0 %
05,0 %
R-22
R-218
R-290
R-403B 56,0 %
39,0 %
05,0 %
R-22
R-218
R-290
R-404A 44,0 %
04,0 %
52,0 %
R-125
R-134a
R-143a
R-405A 45,0 %
07,0 %
05,5 %
42,5 %
R-22
R-152a
R-142b
R-C318
R-406A 55,0 %
41,0 %
04,0 %
R-22
R-142b
R-600a
R-407A 20,0 %
40,0 %
40,0 %
R-32
R-125
R-134a
R-407B 10,0 %
70,0 %
20,0 %
R-32
R-125
R-134a
R-407C 23,0 %
25,0 %
52,0 %
R-32
R-125
R-134a
R-407D 15,0 %
15,0 %
70,0 %
R-32
R-125
R-134a
R-407E 25,0 %
15,0 %
60,0 %
R-32
R-125
R-134a
R-407F 30,0 %
30,0 %
40,0 %
R-32
R-125
R-134a
R-407G 02,5 %
02,5 %
95,0 %
R-32
R-125
R-134a
R-407H 32,5 %
15,0 %
52,5 %
R-32
R-125
R-134a
R-407I 19,5 %
08,5 %
72,0 %
R-32
R-125
R-134a
R-408A 07,0 %
46,0 %
47,0 %
R-125
R-143a
R-22
R-409A 60,0 %
25,0 %
15,0 %
R-22
R-124
R-142b
R-409B 65,0 %
25,0 %
10,0 %
R-22
R-124
R-142b
R-410A 50,0 %
50,0 %
R-32
R-125
R-410B 45,0 %
55,0 %
R-32
R-125
R-411A 01,5 %
87,5 %
11,0 %
R-1270
R-22
R-152a
R-411B 03,0 %
94,0 %
03,0 %
R-1270
R-22
R-152a
R-412A 70,0 %
05,0 %
25,0 %
R-22
R-218
R-142b
R-413A 88,0 %
09,0 %
03,0 %
R-134a
R-218
R-600a
R-414A 51,0 %
28,5 %
04,0 %
16,5 %
R-22
R-124
R-600a
R-142b
R-414B 50,0 %
39,0 %
09,5 %
01,5 %
R-22
R-124
R-600a
R-142b
R-415A 82,0 %
18,0 %
R-22
R-152a
R-415B 25,0 %
75,0 %
R-22
R-152a
R-416A 59,0 %
39,5 %
01,5 %
R-134a
R-124
R-600a
R-417A 46,6 %
50,0 %
03,4 %
R-125
R-134a
R-600
R-417B 79,0 %
18,3 %
02,7 %
R-125
R-134a
R-600
R-417C 19,5 %
78,8 %
01,7 %
R-125
R-134a
R-600
R-418A 01,5 %
96,0 %
02,5 %
R-290
R-22
R-152a
R-420A 88,0 %
12,0 %
R-134a
R-142a
R-421A 58,0 %
42,0 %
R-125
R-134a
R-421B 85,0 %
15,0 %
R-125
R-134a
R-422A 85,1 %
11,5 %
03,4 %
R-125
R-134a
R-600a
R-422B 55 %
42 %
03 %
R-125
R-134a
R-600a
R-422C 82 %
15 %
03 %
R-125
R-134a
R-600a
R-422D 65,1 %
31,5 %
03,4 %
R-125
R-134a
R-600a
R-422E 58,0 %
39,3 %
02,7 %
R-125
R-134a
R-600a
R-423A 52,5 %
47,5 %
R-134a
R-227ea
R-424A 50,5 %
47,0 %
00,9 %
01,0 %
00,6 %
R-125
R-134a
R-600a
R-600
R-601a
R-425A 18,5 %
69,5 %
12,0 %
R-32
R-134a
R-227ea
R-426A 05,1 %
93,0 %
01,3 %
00,6 %
R-125
R-134a
R-600
R-601a
R-427A 50 %
25 %
15 %
10 %
R-134a
R-125
R-32
R-143a
R-428A 77,5 %
20,0 %
00,6 %
01,9 %
R-125
R-143a
R-290
R-600a
R-429A 60,0 %
10,0 %
30,0 %
R-E170
R-152a
R-600a
R-430A 76,0 %
24,0 %
R-152a
R-600a
R-431A 71,0 %
29,0 %
R-290
R-152a
R-432A 80,0 %
20,0 %
R-1270
R-E170
R-433A 30,0 %
70,0 %
R-1270
R-290
R-433B 05,0 %
95,0 %
R-1270
R-290
R-433C 25,0 %
75,0 %
R-1270
R-290
R-434A 63,2 %
18,0 %
16,0 %
02,8 %
R-125
R-143a
R-134a
R-600a
R-435A 80,0 %
20,0 %
R-E170
R-152a
R-436A 56,0 %
44,0 %
R-290
R-600a
R-436B 52,0 %
48,0 %
R-290
R-600a
R-436C 95,0 %
05,0 %
R-290
R-600a
R-437A 78,5 %
19,5 %
01,4 %
00,6 %
R-134a
R-125
R-600a
R-601
R-438A 08,5 %
45,0 %
44,2 %
01,7 %
00,6 %
R-32
R-125
R-134a
R-600
R-601a
R-439A 50,0 %
47,0 %
03,0 %
R-32
R-125
R-600a
R-440A 00,6 %
01,6 %
97,8 %
R-290
R-134a
R-152a
R-441A 03,1 %
54,8 %
06,0 %
36,1 %
R-170
R-290
R-600a
R-600
R-442A 31,0 %
31,0 %
30,0 %
03,0 %
05,0 %
R-32
R-125
R-134a
R-152a
R-227ea
R-443A 55,0 %
40,0 %
05,0 %
R-1270
R-290
R-600a
R-444A 12,0 %
05,0 %
83,0 %
R-32
R-152a
R-1234ze(E)
R-444B 41,5 %
10,0 %
48,5 %
R-32
R-152a
R-1234ze(E)
R-445A 06,0 %
09,0 %
85,0 %
R-744
R-134a
R-1234ze(E)
R-446A 68,0 %
29,0 %
03,0 %
R-32
R-1234ze(E)
R-600
R-447A 68,0 %
03,5 %
28,5 %
R-32
R-125
R-1234ze(E)
R-447B 68,0 %
08,0 %
24,0 %
R-32
R-125
R-600
R-448A 26,0 %
26,0 %
20,0 %
21,0 %
07,0 %
R-32
R-125
R-1234yf
R-134a
R-1234ze(E)
R-449A 25,7 %
25,3 %
24,7 %
24,3 %
R-134a
R-1234yf
R-125
R-32
R-450A 42 %
58 %
R-134a
R-1234ze
R-451A 89,8 %
10,2 %
R-1234yf
R-134a
R-451B 88,8 %
11,2 %
R-1234yf
R-134a
R-452A 11,0 %
59,0 %
30,0 %
R-32
R-125
R-1234yf
R-452B 67,0 %
07,0 %
26,0 %
R-32
R-125
R-1234yf
R-452C 12,5 %
61,0 %
26,5 %
R-32
R-125
R-1234yf
R-453A 20,0 %
20,0 %
53,8 %
05,0 %
00,6 %
00,6 %
R-32
R-125
R-134a
R-227ea
R-600
R-601a
R-454A 35,0 %
65,0 %
R-32
R-1234yf
R-454B 68,9 %
31,1 %
R-32
R-1234yf
R-454C 21,5 %
78,5 %
R-32
R-1234yf
R-455A 03,0 %
21,5 %
75,5 %
R-744
R-32
R-1234yf
R-456A 06,0 %
45,0 %
49,0 %
R-32
R-134a
R-1234ze(E)
R-457A 18,0 %
70,0 %
12,0 %
R-32
R-1234yf
R-152a
R-458A 20,5 %
04,0 %
61,4 %
13,5 %
00,6 %
R-32
R-125
R-134a
R-227ea
R-236fa
R-459A 68,0 %
26,0 %
06,0 %
R-32
R-1234yf
R-1234ze(E)
R-459B 21,0 %
69,0 %
10,0 %
R-32
R-1234yf
R-1234ze(E)
R-460A 12,0 %
52,0 %
14,0 %
22,0 %
R-32
R-125
R-134a
R-1234ze(E)
R-460B 28,0 %
25,0 %
20,0 %
27,0 %
R-32
R-125
R-134a
R-1234ze(E)
R-460C 02,5 %
02,5 %
46,0 %
49,0 %
R-32
R-125
R-134a
R-1234ze(E)
R-461A 55,0 %
05,0 %
32,0 %
05,0 %
03,0 %
R-125
R-143a
R-134a
R-227ea
R-600a
R-462A 09,0 %
42,0 %
02,0 %
44,0 %
03,0 %
R-32
R-125
R-143a
R-134a
R-600
R-463A 06,0 %
36,0 %
30,0 %
14,0 %
14,0 %
R-744
R-32
R-125
R-1234yf
R-134a
R-464A 27,0 %
27,0 %
40,0 %
06,0 %
R-32
R-125
R-1234ze(E)
R-227ea
R-465A 21,0 %
07,9 %
71,1 %
R-32
R-290
R-1234yf
R-466A 49,0 %
11,5 %
39,5 %
R-32
R-125
R-13I1
R-467A 22,0 %
05,0 %
72,4 %
00,6 %
R-32
R-125
R-134a
R-600a
R-468A 03,5 %
21,5 %
75,0 %
R-1132a
R-32
R-1234yf
R-469A 35 %
32,5 %
32,5 %
R-744
R-32
R-125
R-470A 10,0 %
17,0 %
19,0 %
07,0 %
44,0 %
03,0 %
R-744
R-32
R-125
R-134a
R-1234ze(E)
R-227ea
R-470B 10,0 %
11,5 %
11,5 %
03,0 %
57,0 %
07,0 %
R-744
R-32
R-125
R-134a
R-1234ze(E)
R-227ea
R-471A 78,7 %
04,3 %
17,0 %
R-1234ze(E)
R-227ea
R-1336mzz(E)
R-472A 69,0 %
12,0 %
19,0 %
R-744
R-32
R-134a
R-472B 58,0 %
10,0 %
32,0 %
R-744
R-32
R-134a
R-473A 20,0 %
10,0 %
60,0 %
10,0 %
R-1132a
R-23
R-744
R-125
R-474A 23,0 %
77,0 %
R-1132(E)
R-1234yf
R-475A 45,0 %
43,0 %
12,0 %
R-1234yf
R-134a
R-1234ze(E)
R-476A 10,0 %
78,0 %
12,0 %
R-134a
R-1234ze(E)
R-1136mzz(E)
R-5xx Azeotrope Gemische von Kohlenwasserstoffen
ASHRAE-
Nummer
Massen-
anteile
Zusammen-
setzung
R-500 73,8 %
26,2 %
R-12
R-152a
R-501 25,0 %
75,0 %
R-12
R-22
R-502 48,8 %
51,2 %
R-22
R-115
R-503 59,9 %
40,1 %
R-13
R-23
R-504 48,2 %
51,8 %
R-32
R-115
R-505 78,0 %
22,0 %
R-12
R-31
R-506 55,1 %
44,9 %
R-31
R-114
R-507[A] 50,0 %
50,0 %
R-125
R-143a
R-508[A] 39,0 %
61,0 %
R-23
R-116
R-508B 46,0 %
54,0 %
R-23
R-116
R-509[A] 44,0 %
56,0 %
R-22
R-218
R-510A 88,0 %
12,0 %
R-E170
R-600a
R-511A 95,0 %
05,0 %
R-290
R-E170
R-512A 05,0 %
95,0 %
R-134a
R-152a
R-513A 44,0 %
56,0 %
R-134a
R-1234yf
R-513B 58,5 %
41,5 %
R-1234yf
R-134a
R-514A 74,7 %
25,3 %
R-1336mzz(Z)
R-1130(E)
R-515A 88,0 %
12,0 %
R-1234ze(E)
R-227ea
R-515B 91,1 %
08,9 %
R-1234ze(E)
R-227ea
R-516A 77,5 %
08,5 %
14,0 %
R-1234yf
R-134a
R-152a

Leitungskennzeichnung

[Bearbeiten | Quelltext bearbeiten]

Die Kennzeichnung der Leitungen in einer Kälteanlage erfolgt allgemein durch einseitig zugespitzte, farbige Schilder (DIN 2405). Die Spitze gibt dabei die Durchflussrichtung an, die Grundfarbe die Art des Mediums.

Bei brennbaren Kältemitteln ist die Spitze rot.

Bei Kältemitteln befinden sich hinter der Spitze einer oder mehrere Querstreifen.

Die Querstreifenfarbe gibt den Zustand des Kältemittels an.

Die Anzahl der Querstreifen steht für die Zahl der jeweiligen Stufe der Kälteanlage. Ausgegangen wird dabei von der Stufe tiefster Temperaturen: Primärkreis = 1. Stufe, Sekundärkreis = 2. Stufe usw.

Zuordnung der Grundfarben und Querstreifenfarben zu Art und Zustand des Mediums:

Art des Mediums Grundfarbe Zustand des Mediums Querstreifenfarbe
Sole violett RAL 4001 flüssig
Flüssiges Kühlgut braun RAL 8001 flüssig
Luft blau RAL 5009 gasförmig
Vakuum grau RAL 7002 (Vakuum)
Wasser grün RAL 6010 flüssig
Wasserdampf rot RAL 3003 gasförmig
Kältemittel gelb RAL 1012 kalt, gasförmig blau RAL 5009
Kältemittel gelb RAL 1012 heiß, gasförmig rot RAL 3003
Kältemittel gelb RAL 1012 flüssig grün RAL 6010
  • Deutsches Institut für Normung (Hrsg.): DIN 8960 - Kältemittel - Anforderungen und Kurzzeichen. Berlin 1. November 1998.
  • Peter Stephan, Stephan Kabelac, Matthias Kind, Dieter Mewes, Karlheinz Schaber, Thomas Wetzel (Hrsg.): VDI-Wärmeatlas. 12. Auflage. Springer-Verlag GmbH Deutschland, Berlin 2019, ISBN 978-3-662-52988-1, Teil D Thermophysikalische Stoffeigenschaften.

Einzelnachweise

[Bearbeiten | Quelltext bearbeiten]
  1. Spektrum der Wissenschaft. (PDF; 416 kB) Juni 2005, archiviert vom Original (nicht mehr online verfügbar) am 26. Januar 2009; abgerufen am 11. Oktober 2009.
  2. J. M. Hamilton Jr.: The organic fluorochemicals industry. In: Tatlow, John C. and Sharpe, Alan G. and Stacey, M. (Hrsg.): Advances in Fluorine Chemistry. Band 3. Butterworth, London 1963, S. 117–181.
  3. DuPont: Deutsche Übersetzung des Artikels „Freon-Geschichte - Siebzig Jahre Sicherheit - Fluorkohlenstoff-Kältemittel - Die Geschichte einer Ära: 1929 bis 1999“. In: ASHRAE Journal. (vhkk.org [PDF]).
  4. H. Goldwhite: The Manhattan Project. In: Journal of Fluorine Chemistry. Band 33, Nr. 1-4. Elsevier, 1986, S. 109–132.
  5. a b Reindl, Douglas T. et al.: Celebrating 100 years of ASHRAE Standard 34. In: ASHRAE Journal. 56. Auflage. Nr. 11. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, 2014, S. 36–43.
  6. https://www.iso.org/standard/5168.html
  7. https://www.beuth.de/de/norm/din-8960/532079
  8. a b c d e Roswitha Böhrer, Rainer Koltermann, Jörg Peters: Kältemittel und Kältemittelgemische. In: DIE KÄLTE & Klimatechnik. Band 8. Alfons W. Gentner Verlag GmbH & Co. KG, Stuttgart 1999, S. 16–21 (diekaelte.de [PDF]).
  9. (H)(C)FC and HFO Nomenclature - basic principles. (PDF) European Fluorocarbons Technical Committee (EFCTC), Januar 2016, archiviert vom Original (nicht mehr online verfügbar) am 24. Juli 2020; abgerufen am 26. Juni 2019 (englisch).
  10. eurammon-Informationsschrift Nr. 2. (PDF; 62 kB) Archiviert vom Original (nicht mehr online verfügbar) am 17. November 2006; abgerufen am 12. September 2009.
  11. eurammon-Informationsschrift Nr. 1. (PDF; 54 kB) Archiviert vom Original (nicht mehr online verfügbar) am 17. November 2006; abgerufen am 12. September 2009.
  12. S. F. Pearson: Refrigerants - Past, Present and Future. In: International Institute of Refrigeration (Hrsg.): Tagungsband des International Congress of Refrigeration. Paris 2003, S. 11.
  13. DuPont Sicherheitsdatenblatt R-404A. (PDF; 138 kB) Archiviert vom Original (nicht mehr online verfügbar) am 17. August 2013; abgerufen am 21. September 2012.
  14. blauer-engel.de : Presse-Artikel; genaue Gerätebezeichnung; abgerufen am 8. August 2018
  15. DIN EN 378-1:2021-06, Kälteanlagen und Wärmepumpen - Sicherheitstechnische und umweltrelevante Anforderungen - Teil 1: Grundlegende Anforderungen, Begriffe, Klassifikationen und Auswahlkriterien; Deutsche Fassung EN_378-1:2016+A1:2020. Beuth Verlag GmbH, S. Anhang E, doi:10.31030/3252783 (beuth.de [abgerufen am 13. April 2023]).
  16. DIN EN 378-1:2021-06, Kälteanlagen und Wärmepumpen - Sicherheitstechnische und umweltrelevante Anforderungen - Teil 1: Grundlegende Anforderungen, Begriffe, Klassifikationen und Auswahlkriterien; Deutsche Fassung EN_378-1:2016+A1:2020. Beuth Verlag GmbH, S. Anhang C, doi:10.31030/3252783 (beuth.de [abgerufen am 13. April 2023]).
  17. Kühlmittel: Die Gefahr schlummert in der Klimaanlage. In: ZEIT ONLINE. Abgerufen am 23. Februar 2023.
  18. Pressemeldung des vda vom 28. Mai 2009.
  19. Daimler boykottiert Vereinbarung zu R1234yf in: Spiegel, 25. September 2012.
  20. Daimler setzt doch auf umstrittenes Kältemittel – Ab 2017 verwendet Mercedes R1234yf. In: motor-talk.de. 20. Oktober 2015, abgerufen am 23. Februar 2023.
  21. R744 und R290 für PKW Klima – Kompressoren und Systeme. (PDF) In: vdi-karlsruhe.de. Oktober 2021, S. 9 und 18, abgerufen am 14. November 2023 (deutsch).
  22. Kauffeld, M.: Vergleich der natürlichen Kältemittel untereinander für eine Vorauswahl. In: M. Eckert, M. Kauffeld & V. Siegismund (Hrsg.): Natürliche Kältemittel: Anwendungen und Praxiserfahrungen. VDE Verlag GmbH; cci Dialog GmbH, 2019, ISBN 978-3-922420-62-0, S. 15 (cci-dialog.de [abgerufen am 6. Juli 2022]).
  23. Kauffeld, M.: Vergleich der natürlichen Kältemittel untereinander für eine Vorauswahl. In: Michael Eckert, Michael Kauffeld, Volker Siegismund (Hrsg.): Natürliche Kältemittel - Anwendungen und Praxiserfahrungen. VDE Verlag GmbH; cci Dialog GmbH, Berlin 2019, ISBN 978-3-8007-3936-3, S. 15 (cci-dialog.de [abgerufen am 6. Juli 2022]).
  24. Ilka Kopplin: Neue Kühltechnik braucht nur Leitungswasser. In: Frankfurter Allgemeine. 25. September 2022 (faz.net [abgerufen am 24. Februar 2023]).
  25. Start-up-Check: Wie Efficient Energy Rechenzentren und Fabriken umweltfreundlicher kühlt. In: Handelsblatt. Abgerufen am 24. Februar 2023.
  26. Wärmepumpen und Kältemaschinen: Wie es auch ohne schädliche Fluor-Gase geht. In: heise online. Abgerufen am 24. Februar 2023.
  27. Nur mit Wasser gekocht. In: marktundmittelstand.de. Abgerufen am 24. Februar 2023.
  28. Maria Theuring: Wasser (H₂O / R-718). 12. November 2021, abgerufen am 28. Februar 2023.
  29. Kältemittel für Wärmepumpen. Klimaschutz- und Energieagentur Niedersachsen GmbH, abgerufen am 28. Februar 2023.
  30. Florian Hanslik, Juergen Suess: Water as a Refrigerant in Centrifugal Compressor Cooling Systems for Industrial Applications. In: Advanced Cooling Technologies and Applications. IntechOpen, 2019, ISBN 978-1-78984-838-0, S. 249, doi:10.5772/intechopen.79614.
  31. G. Myhre et al., in Climate Change 2013: The Physical Science Basis, Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013)
  32. Mark O. McLinden, Christopher J. Seeton, Andy Pearson: New refrigerants and system configurations for vapor-compression refrigeration. In: Science. Band 370, Nr. 6518, 13. November 2020, S. 791–796, doi:10.1126/science.abe3692.